Linux下通用声卡驱动源码。(CM8738,CM2000,TE-734,Crystal系列)
Linux 下的通用声卡驱动源码:
/*****************************************************************************/ /* * cmpci.c -- C-Media PCI audio driver. * * Copyright (C) 1999 ChenLi Tien (cltien@home.com) * C-media support (support@cmedia.com.tw) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Special thanks to David C. Niemi, Jan Pfeifer * * * Module command line parameters: * none so far * * * Supported devices: * /dev/dsp standard /dev/dsp device, (mostly) OSS compatible * /dev/mixer standard /dev/mixer device, (mostly) OSS compatible * /dev/midi simple MIDI UART interface, no ioctl * * The card has both an FM and a Wavetable synth, but I have to figure * out first how to drive them... * * Revision history * 06.05.98 0.1 Initial release * 10.05.98 0.2 Fixed many bugs, esp. ADC rate calculation * First stab at a simple midi interface (no bells&whistles) * 13.05.98 0.3 Fix stupid cut&paste error: set_adc_rate was called instead of * set_dac_rate in the FMODE_WRITE case in cm_open * Fix hwptr out of bounds (now mpg123 works) * 14.05.98 0.4 Don't allow excessive interrupt rates * 08.06.98 0.5 First release using Alan Cox' soundcore instead of miscdevice * 03.08.98 0.6 Do not include modversions.h * Now mixer behaviour can basically be selected between * "OSS documented" and "OSS actual" behaviour * 31.08.98 0.7 Fix realplayer problems - dac.count issues * 10.12.98 0.8 Fix drain_dac trying to wait on not yet initialized DMA * 16.12.98 0.9 Fix a few f_file & FMODE_ bugs * 06.01.99 0.10 remove the silly SA_INTERRUPT flag. * hopefully killed the egcs section type conflict * 12.03.99 0.11 cinfo.blocks should be reset after GETxPTR ioctl. * reported by Johan Maes <joma@telindus.be> * 22.03.99 0.12 return EAGAIN instead of EBUSY when O_NONBLOCK * read/write cannot be executed * 18.08.99 1.5 Only deallocate DMA buffer when unloading. * 02.09.99 1.6 Enable SPDIF LOOP * Change the mixer read back * 21.09.99 2.33 Use RCS version as driver version. * Add support for modem, S/PDIF loop and 4 channels. * (8738 only) * Fix bug cause x11amp cannot play. * */ /*****************************************************************************/ #define EXPORT_SYMTAB #include <linux/version.h> #include <linux/config.h> #include <linux/module.h> #include <linux/string.h> #include <linux/ioport.h> #include <linux/sched.h> #include <linux/delay.h> #include <linux/sound.h> #include <linux/malloc.h> #include <linux/soundcard.h> #include <linux/pci.h> #include <asm/io.h> #include <asm/dma.h> #include <linux/init.h> #include <linux/poll.h> #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) #include <linux/spinlock.h> #else #include <asm/spinlock.h> #endif #include <asm/uaccess.h> #include <asm/hardirq.h> #include "dm.h" /* --------------------------------------------------------------------- */ #undef OSS_DOCUMENTED_MIXER_SEMANTICS /* --------------------------------------------------------------------- */ #ifndef PCI_VENDOR_ID_CMEDIA #define PCI_VENDOR_ID_CMEDIA 0x13F6 #endif #ifndef PCI_DEVICE_ID_CMEDIA_CM8338A #define PCI_DEVICE_ID_CMEDIA_CM8338A 0x0100 #endif #ifndef PCI_DEVICE_ID_CMEDIA_CM8338B #define PCI_DEVICE_ID_CMEDIA_CM8338B 0x0101 #endif #ifndef PCI_DEVICE_ID_CMEDIA_CM8738 #define PCI_DEVICE_ID_CMEDIA_CM8738 0x0111 #endif #ifndef PCI_DEVICE_ID_CMEDIA_CM8738B #define PCI_DEVICE_ID_CMEDIA_CM8738B 0x0112 #endif #define CM_MAGIC ((PCI_VENDOR_ID_CMEDIA<<16)|PCI_DEVICE_ID_CMEDIA_CM8338A) /* * CM8338 registers definition */ #define CODEC_CMI_FUNCTRL0 (0x00) #define CODEC_CMI_FUNCTRL1 (0x04) #define CODEC_CMI_CHFORMAT (0x08) #define CODEC_CMI_INT_HLDCLR (0x0C) #define CODEC_CMI_INT_STATUS (0x10) #define CODEC_CMI_LEGACY_CTRL (0x14) #define CODEC_CMI_MISC_CTRL (0x18) #define CODEC_CMI_TDMA_POS (0x1C) #define CODEC_CMI_MIXER (0x20) #define CODEC_SB16_DATA (0x22) #define CODEC_SB16_ADDR (0x23) #define CODEC_CMI_MIXER1 (0x24) #define CODEC_CMI_MIXER2 (0x25) #define CODEC_CMI_AUX_VOL (0x26) #define CODEC_CMI_MISC (0x27) #define CODEC_CMI_AC97 (0x28) #define CODEC_CMI_CH0_FRAME1 (0x80) #define CODEC_CMI_CH0_FRAME2 (0x84) #define CODEC_CMI_CH1_FRAME1 (0x88) #define CODEC_CMI_CH1_FRAME2 (0x8C) #define CODEC_CMI_EXT_REG (0xF0) #define UCHAR unsigned char /* ** Mixer registers for SB16 */ #define DSP_MIX_DATARESETIDX ((UCHAR)(0x00)) #define DSP_MIX_MASTERVOLIDX_L ((UCHAR)(0x30)) #define DSP_MIX_MASTERVOLIDX_R ((UCHAR)(0x31)) #define DSP_MIX_VOICEVOLIDX_L ((UCHAR)(0x32)) #define DSP_MIX_VOICEVOLIDX_R ((UCHAR)(0x33)) #define DSP_MIX_FMVOLIDX_L ((UCHAR)(0x34)) #define DSP_MIX_FMVOLIDX_R ((UCHAR)(0x35)) #define DSP_MIX_CDVOLIDX_L ((UCHAR)(0x36)) #define DSP_MIX_CDVOLIDX_R ((UCHAR)(0x37)) #define DSP_MIX_LINEVOLIDX_L ((UCHAR)(0x38)) #define DSP_MIX_LINEVOLIDX_R ((UCHAR)(0x39)) #define DSP_MIX_MICVOLIDX ((UCHAR)(0x3A)) #define DSP_MIX_SPKRVOLIDX ((UCHAR)(0x3B)) #define DSP_MIX_OUTMIXIDX ((UCHAR)(0x3C)) #define DSP_MIX_ADCMIXIDX_L ((UCHAR)(0x3D)) #define DSP_MIX_ADCMIXIDX_R ((UCHAR)(0x3E)) #define DSP_MIX_INGAINIDX_L ((UCHAR)(0x3F)) #define DSP_MIX_INGAINIDX_R ((UCHAR)(0x40)) #define DSP_MIX_OUTGAINIDX_L ((UCHAR)(0x41)) #define DSP_MIX_OUTGAINIDX_R ((UCHAR)(0x42)) #define DSP_MIX_AGCIDX ((UCHAR)(0x43)) #define DSP_MIX_TREBLEIDX_L ((UCHAR)(0x44)) #define DSP_MIX_TREBLEIDX_R ((UCHAR)(0x45)) #define DSP_MIX_BASSIDX_L ((UCHAR)(0x46)) #define DSP_MIX_BASSIDX_R ((UCHAR)(0x47)) #define CM_CH0_RESET 0x04 #define CM_CH1_RESET 0x08 #define CM_EXTENT_CODEC 0x100 #define CM_EXTENT_MIDI 0x2 #define CM_EXTENT_SYNTH 0x4 #define CM_INT_CH0 1 #define CM_INT_CH1 2 #define CM_CFMT_STEREO 0x01 #define CM_CFMT_16BIT 0x02 #define CM_CFMT_MASK 0x03 #define CM_CFMT_DACSHIFT 0 #define CM_CFMT_ADCSHIFT 2 static const unsigned sample_size[] = { 1, 2, 2, 4 }; static const unsigned sample_shift[] = { 0, 1, 1, 2 }; #define CM_CENABLE_RE 0x2 #define CM_CENABLE_PE 0x1 /* MIDI buffer sizes */ #define MIDIINBUF 256 #define MIDIOUTBUF 256 #define FMODE_MIDI_SHIFT 2 #define FMODE_MIDI_READ (FMODE_READ << FMODE_MIDI_SHIFT) #define FMODE_MIDI_WRITE (FMODE_WRITE << FMODE_MIDI_SHIFT) #define FMODE_DMFM 0x10 #define SND_DEV_DSP16 5 #ifdef CONFIG_SOUND_CMPCI_4CH #define DUAL_DAC #endif #ifdef DUAL_DAC #define set_dac1_rate set_adc_rate #define stop_dac1 stop_adc #define get_dmadac1 get_dmaadc #endif /* --------------------------------------------------------------------- */ struct cm_state { /* magic */ unsigned int magic; /* we keep cm cards in a linked list */ struct cm_state *next; /* soundcore stuff */ int dev_audio; int dev_mixer; #ifdef DUAL_DAC int dev_dsp; int dual_mode; int hw_dual_dac; #endif int four_ch; int dev_midi; int dev_dmfm; /* hardware resources */ unsigned int iosb, iobase, iosynth, iomidi, iogame, irq; /* mixer stuff */ struct { unsigned int modcnt; #ifndef OSS_DOCUMENTED_MIXER_SEMANTICS unsigned short vol[13]; #endif /* OSS_DOCUMENTED_MIXER_SEMANTICS */ } mix; /* wave stuff */ unsigned int rateadc, ratedac; unsigned char fmt, enable; spinlock_t lock; struct semaphore open_sem; mode_t open_mode; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) wait_queue_head_t open_wait; #else struct wait_queue *open_wait; #endif struct dmabuf { void *rawbuf; unsigned rawphys; unsigned buforder; unsigned numfrag; unsigned fragshift; unsigned hwptr, swptr; unsigned total_bytes; int count; unsigned error; /* over/underrun */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) wait_queue_head_t wait; #else struct wait_queue *wait; #endif /* redundant, but makes calculations easier */ unsigned fragsize; unsigned dmasize; unsigned fragsamples; unsigned dmasamples; /* OSS stuff */ unsigned mapped:1; unsigned ready:1; unsigned endcleared:1; unsigned ossfragshift; int ossmaxfrags; unsigned subdivision; } dma_dac, dma_adc; /* midi stuff */ struct { unsigned ird, iwr, icnt; unsigned ord, owr, ocnt; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) wait_queue_head_t iwait; wait_queue_head_t owait; #else struct wait_queue *iwait; struct wait_queue *owait; #endif struct timer_list timer; unsigned char ibuf[MIDIINBUF]; unsigned char obuf[MIDIOUTBUF]; } midi; /* misc stuff */ int modem; }; /* --------------------------------------------------------------------- */ static struct cm_state *devs = NULL; static struct cm_state *devaudio = NULL; static unsigned long wavetable_mem = 0; /* --------------------------------------------------------------------- */ extern __inline__ unsigned ld2(unsigned int x) { unsigned r = 0; if (x >= 0x10000) { x >>= 16; r += 16; } if (x >= 0x100) { x >>= 8; r += 8; } if (x >= 0x10) { x >>= 4; r += 4; } if (x >= 4) { x >>= 2; r += 2; } if (x >= 2) r++; return r; } /* * hweightN: returns the hamming weight (i.e. the number * of bits set) of a N-bit word */ #ifdef hweight32 #undef hweight32 #endif extern __inline__ unsigned int hweight32(unsigned int w) { unsigned int res = (w & 0x55555555) + ((w >> 1) & 0x55555555); res = (res & 0x33333333) + ((res >> 2) & 0x33333333); res = (res & 0x0F0F0F0F) + ((res >> 4) & 0x0F0F0F0F); res = (res & 0x00FF00FF) + ((res >> 8) & 0x00FF00FF); return (res & 0x0000FFFF) + ((res >> 16) & 0x0000FFFF); } /* --------------------------------------------------------------------- */ /* * Why use byte IO? Nobody knows, but S3 does it also in their Windows driver. */ #undef DMABYTEIO static void set_dmadac(struct cm_state *s, unsigned int addr, unsigned int count) { count--; outl(addr, s->iobase + CODEC_CMI_CH0_FRAME1); outw(count, s->iobase + CODEC_CMI_CH0_FRAME2); outb(inb(s->iobase + CODEC_CMI_FUNCTRL0) & ~1, s->iobase + CODEC_CMI_FUNCTRL0); } static void set_dmadac1(struct cm_state *s, unsigned int addr, unsigned int count) { count--; outl(addr, s->iobase + CODEC_CMI_CH1_FRAME1); outw(count, s->iobase + CODEC_CMI_CH1_FRAME2); outb(inb(s->iobase + CODEC_CMI_FUNCTRL0) & ~2, s->iobase + CODEC_CMI_FUNCTRL0); } static void set_dmaadc(struct cm_state *s, unsigned int addr, unsigned int count) { count--; outl(addr, s->iobase + CODEC_CMI_CH1_FRAME1); outw(count, s->iobase + CODEC_CMI_CH1_FRAME2); outb(inb(s->iobase + CODEC_CMI_FUNCTRL0) | 2, s->iobase + CODEC_CMI_FUNCTRL0); } extern __inline__ unsigned get_dmadac(struct cm_state *s) { unsigned int curr_addr; #if 1 curr_addr = inw(s->iobase + CODEC_CMI_CH0_FRAME2) + 1; curr_addr <<= sample_shift[(s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK]; curr_addr = s->dma_dac.dmasize - curr_addr; #else curr_addr = inl(s->iobase + CODEC_CMI_CH0_FRAME1); curr_addr &= ~(sample_size[(s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK]-1); curr_addr -= s->dma_dac.rawphys; #endif return curr_addr; } extern __inline__ unsigned get_dmaadc(struct cm_state *s) { unsigned int curr_addr; #if 1 curr_addr = inw(s->iobase + CODEC_CMI_CH1_FRAME2) + 1; curr_addr <<= sample_shift[(s->fmt >> CM_CFMT_ADCSHIFT) & CM_CFMT_MASK]; curr_addr = s->dma_adc.dmasize - curr_addr; #else curr_addr = inl(s->iobase + CODEC_CMI_CH1_FRAME1); curr_addr &= ~(sample_size[(s->fmt >> CM_CFMT_ADCSHIFT) & CM_CFMT_MASK]-1); curr_addr -= s->dma_adc.rawphys; #endif return curr_addr; } static void wrmixer(struct cm_state *s, unsigned char idx, unsigned char data) { outb(idx, s->iobase + CODEC_SB16_ADDR); outb(data, s->iobase + CODEC_SB16_DATA); } static unsigned char rdmixer(struct cm_state *s, unsigned char idx) { unsigned char v; outb(idx, s->iobase + CODEC_SB16_ADDR); v = inb(s->iobase + CODEC_SB16_DATA); return v; } static void set_fmt(struct cm_state *s, unsigned char mask, unsigned char data) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); if (mask) s->fmt = inb(s->iobase + CODEC_CMI_CHFORMAT); s->fmt = (s->fmt & mask) | data; outb(s->fmt, s->iobase + CODEC_CMI_CHFORMAT); spin_unlock_irqrestore(&s->lock, flags); } static void frobindir(struct cm_state *s, unsigned char idx, unsigned char mask, unsigned char data) { outb(idx, s->iobase + CODEC_SB16_ADDR); outb((inb(s->iobase + CODEC_SB16_DATA) & mask) | data, s->iobase + CODEC_SB16_DATA); } static struct { unsigned rate; unsigned lower; unsigned upper; unsigned char freq; } rate_lookup[] = { { 5512, (0 + 5512) / 2, (5512 + 8000) / 2, 0 }, { 8000, (5512 + 8000) / 2, (8000 + 11025) / 2, 4 }, { 11025, (8000 + 11025) / 2, (11025 + 16000) / 2, 1 }, { 16000, (11025 + 16000) / 2, (16000 + 22050) / 2, 5 }, { 22050, (16000 + 22050) / 2, (22050 + 32000) / 2, 2 }, { 32000, (22050 + 32000) / 2, (32000 + 44100) / 2, 6 }, { 44100, (32000 + 44100) / 2, (44100 + 48000) / 2, 3 }, { 48000, (44100 + 48000) / 2, 48000, 7 } }; static void set_dac_rate(struct cm_state *s, unsigned rate) { unsigned long flags; unsigned char freq = 4, val; int i; if (rate > 48000) rate = 48000; if (rate < 5512) rate = 5512; for (i = 0; i < sizeof(rate_lookup) / sizeof(rate_lookup[0]); i++) { if (rate > rate_lookup[i].lower && rate <= rate_lookup[i].upper) { rate = rate_lookup[i].rate; freq = rate_lookup[i].freq; break; } } s->ratedac = rate; freq <<= 2; spin_lock_irqsave(&s->lock, flags); val = inb(s->iobase + CODEC_CMI_FUNCTRL1 + 1) & ~0x1c; outb(val | freq, s->iobase + CODEC_CMI_FUNCTRL1 + 1); spin_unlock_irqrestore(&s->lock, flags); } static void set_adc_rate(struct cm_state *s, unsigned rate) { unsigned long flags; unsigned char freq = 4, val; int i; if (rate > 48000) rate = 48000; if (rate < 5512) rate = 5512; for (i = 0; i < sizeof(rate_lookup) / sizeof(rate_lookup[0]); i++) { if (rate > rate_lookup[i].lower && rate <= rate_lookup[i].upper) { rate = rate_lookup[i].rate; freq = rate_lookup[i].freq; break; } } s->rateadc = rate; freq <<= 5; spin_lock_irqsave(&s->lock, flags); val = inb(s->iobase + CODEC_CMI_FUNCTRL1 + 1) & ~0xe0; outb(val | freq, s->iobase + CODEC_CMI_FUNCTRL1 + 1); spin_unlock_irqrestore(&s->lock, flags); } /* --------------------------------------------------------------------- */ static inline void reset_adc(struct cm_state *s) { /* reset bus master */ outb(s->enable | CM_CH1_RESET, s->iobase + CODEC_CMI_FUNCTRL0 + 2); outb(s->enable & ~CM_CH1_RESET, s->iobase + CODEC_CMI_FUNCTRL0 + 2); } static inline void reset_dac(struct cm_state *s) { /* reset bus master */ outb(s->enable | CM_CH0_RESET, s->iobase + CODEC_CMI_FUNCTRL0 + 2); outb(s->enable & ~CM_CH0_RESET, s->iobase + CODEC_CMI_FUNCTRL0 + 2); } static inline void pause_adc(struct cm_state *s) { outb(inb(s->iobase + CODEC_CMI_FUNCTRL0) | 8, s->iobase + CODEC_CMI_FUNCTRL0); } static inline void pause_dac(struct cm_state *s) { outb(inb(s->iobase + CODEC_CMI_FUNCTRL0) | 4, s->iobase + CODEC_CMI_FUNCTRL0); } extern inline void disable_adc(struct cm_state *s) { /* disable channel */ s->enable &= ~CM_CENABLE_RE; outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2); reset_adc(s); } extern inline void disable_dac(struct cm_state *s) { /* disable channel */ s->enable &= ~CM_CENABLE_PE; outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2); reset_dac(s); } extern inline void enable_adc(struct cm_state *s) { if (!(s->enable & CM_CENABLE_RE)) { /* enable channel */ s->enable |= CM_CENABLE_RE; outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2); } else { outb(inb(s->iobase + CODEC_CMI_FUNCTRL0) & ~8, s->iobase + CODEC_CMI_FUNCTRL0); } } extern inline void enable_dac(struct cm_state *s) { if (!(s->enable & CM_CENABLE_PE)) { /* enable channel */ s->enable |= CM_CENABLE_PE; outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2); } else { outb(inb(s->iobase + CODEC_CMI_FUNCTRL0) & ~4, s->iobase + CODEC_CMI_FUNCTRL0); } } extern inline void stop_adc(struct cm_state *s) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); if (s->enable & CM_CENABLE_RE) { /* disable interrupt */ outb(inb(s->iobase + CODEC_CMI_INT_HLDCLR + 2) & ~2, s->iobase + CODEC_CMI_INT_HLDCLR + 2); disable_adc(s); } spin_unlock_irqrestore(&s->lock, flags); } extern inline void stop_dac(struct cm_state *s) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); if (s->enable & CM_CENABLE_PE) { /* disable interrupt */ outb(inb(s->iobase + CODEC_CMI_INT_HLDCLR + 2) & ~1, s->iobase + CODEC_CMI_INT_HLDCLR + 2); disable_dac(s); } spin_unlock_irqrestore(&s->lock, flags); } static void start_dac(struct cm_state *s) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); if ((s->dma_dac.mapped || s->dma_dac.count > 0) && s->dma_dac.ready) { /* enable interrupt */ outb(inb(s->iobase + CODEC_CMI_INT_HLDCLR + 2) | 1, s->iobase + CODEC_CMI_INT_HLDCLR + 2); enable_dac(s); } spin_unlock_irqrestore(&s->lock, flags); } static void start_dac1(struct cm_state *s) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); if ((s->dma_adc.mapped || s->dma_adc.count > 0) && s->dma_adc.ready) { /* enable interrupt */ outb(inb(s->iobase + CODEC_CMI_INT_HLDCLR + 2) | 2, s->iobase + CODEC_CMI_INT_HLDCLR + 2); enable_adc(s); } spin_unlock_irqrestore(&s->lock, flags); } static void start_adc(struct cm_state *s) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); if ((s->dma_adc.mapped || s->dma_adc.count < (signed)(s->dma_adc.dmasize - 2*s->dma_adc.fragsize)) && s->dma_adc.ready) { /* enable interrupt */ outb(inb(s->iobase + CODEC_CMI_INT_HLDCLR + 2) | 2, s->iobase + CODEC_CMI_INT_HLDCLR + 2); enable_adc(s); } spin_unlock_irqrestore(&s->lock, flags); } /* --------------------------------------------------------------------- */ #define DMABUF_DEFAULTORDER (16-PAGE_SHIFT) #define DMABUF_MINORDER 1 static void dealloc_dmabuf(struct dmabuf *db) { unsigned long map, mapend; if (db->rawbuf) { /* undo marking the pages as reserved */ mapend = MAP_NR(db->rawbuf + (PAGE_SIZE << db->buforder) - 1); for (map = MAP_NR(db->rawbuf); map <= mapend; map++) clear_bit(PG_reserved, &mem_map[map].flags); free_pages((unsigned long)db->rawbuf, db->buforder); } db->rawbuf = NULL; db->mapped = db->ready = 0; } /* Ch0 is used for playback, Ch1 is used for recording */ static int prog_dmabuf(struct cm_state *s, unsigned rec) { struct dmabuf *db = rec ? &s->dma_adc : &s->dma_dac; unsigned rate = rec ? s->rateadc : s->ratedac; int order; unsigned bytepersec; unsigned bufs; unsigned long map, mapend; unsigned char fmt; unsigned long flags; spin_lock_irqsave(&s->lock, flags); fmt = s->fmt; if (rec) { stop_adc(s); fmt >>= CM_CFMT_ADCSHIFT; } else { stop_dac(s); fmt >>= CM_CFMT_DACSHIFT; } spin_unlock_irqrestore(&s->lock, flags); fmt &= CM_CFMT_MASK; db->hwptr = db->swptr = db->total_bytes = db->count = db->error = db->endcleared = 0; if (!db->rawbuf) { db->ready = db->mapped = 0; for (order = DMABUF_DEFAULTORDER; order >= DMABUF_MINORDER; order--) if ((db->rawbuf = (void *)__get_free_pages(GFP_KERNEL | GFP_DMA, order))) break; if (!db->rawbuf) return -ENOMEM; db->buforder = order; db->rawphys = virt_to_bus(db->rawbuf); if ((db->rawphys ^ (db->rawphys + (PAGE_SIZE << db->buforder) - 1)) & ~0xffff) printk(KERN_DEBUG "cm: DMA buffer crosses 64k boundary: busaddr 0x%lx size %ld\n", (long) db->rawphys, PAGE_SIZE << db->buforder); if ((db->rawphys + (PAGE_SIZE << db->buforder) - 1) & ~0xffffff) printk(KERN_DEBUG "cm: DMA buffer beyond 16MB: busaddr 0x%lx size %ld\n", (long) db->rawphys, PAGE_SIZE << db->buforder); /* now mark the pages as reserved; otherwise remap_page_range doesn't do what we want */ mapend = MAP_NR(db->rawbuf + (PAGE_SIZE << db->buforder) - 1); for (map = MAP_NR(db->rawbuf); map <= mapend; map++) set_bit(PG_reserved, &mem_map[map].flags); } bytepersec = rate << sample_shift[fmt]; bufs = PAGE_SIZE << db->buforder; if (db->ossfragshift) { if ((1000 << db->ossfragshift) < bytepersec) db->fragshift = ld2(bytepersec/1000); else db->fragshift = db->ossfragshift; } else { db->fragshift = ld2(bytepersec/100/(db->subdivision ? db->subdivision : 1)); if (db->fragshift < 3) db->fragshift = 3; } db->numfrag = bufs >> db->fragshift; while (db->numfrag < 4 && db->fragshift > 3) { db->fragshift--; db->numfrag = bufs >> db->fragshift; } db->fragsize = 1 << db->fragshift; if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag) db->numfrag = db->ossmaxfrags; /* to make fragsize >= 4096 */ if (s->modem) { while (db->fragsize < 4096 && db->numfrag >= 4) { db->fragsize *= 2; db->fragshift++; db->numfrag /= 2; } } db->fragsamples = db->fragsize >> sample_shift[fmt]; db->dmasize = db->numfrag << db->fragshift; db->dmasamples = db->dmasize >> sample_shift[fmt]; memset(db->rawbuf, (fmt & CM_CFMT_16BIT) ? 0 : 0x80, db->dmasize); spin_lock_irqsave(&s->lock, flags); if (rec) { #ifdef DUAL_DAC if (s->dual_mode) set_dmadac1(s, db->rawphys, db->dmasize >> sample_shift[fmt]); else #endif set_dmaadc(s, db->rawphys, db->dmasize >> sample_shift[fmt]); /* program sample counts */ outw(db->fragsamples-1, s->iobase + CODEC_CMI_CH1_FRAME2 + 2); } else { set_dmadac(s, db->rawphys, db->dmasize >> sample_shift[fmt]); /* program sample counts */ outw(db->fragsamples-1, s->iobase + CODEC_CMI_CH0_FRAME2 + 2); } spin_unlock_irqrestore(&s->lock, flags); db->ready = 1; return 0; } extern __inline__ void clear_advance(struct cm_state *s) { unsigned char c = (s->fmt & (CM_CFMT_16BIT << CM_CFMT_DACSHIFT)) ? 0 : 0x80; unsigned char *buf = s->dma_dac.rawbuf; #ifdef DUAL_DAC unsigned char *buf1 = s->dma_adc.rawbuf; #endif unsigned bsize = s->dma_dac.dmasize; unsigned bptr = s->dma_dac.swptr; unsigned len = s->dma_dac.fragsize; if (bptr + len > bsize) { unsigned x = bsize - bptr; memset(buf + bptr, c, x); #ifdef DUAL_DAC if (s->dual_mode) memset(buf1 + bptr, c, x); #endif bptr = 0; len -= x; } memset(buf + bptr, c, len); #ifdef DUAL_DAC if (s->dual_mode) memset(buf1 + bptr, c, len); #endif } /* call with spinlock held! */ static void cm_update_ptr(struct cm_state *s) { unsigned hwptr; int diff; /* update ADC pointer */ if (s->dma_adc.ready) { #ifdef DUAL_DAC if (s->dual_mode) { hwptr = get_dmaadc(s) % s->dma_adc.dmasize; diff = (s->dma_adc.dmasize + hwptr - s->dma_adc.hwptr) % s->dma_adc.dmasize; s->dma_adc.hwptr = hwptr; s->dma_adc.total_bytes += diff; if (s->dma_adc.mapped) { s->dma_adc.count += diff; if (s->dma_adc.count >= (signed)s->dma_adc.fragsize) wake_up(&s->dma_adc.wait); } else { s->dma_adc.count -= diff; if (s->dma_adc.count <= 0) { pause_adc(s); s->dma_adc.error++; } else if (s->dma_adc.count <= (signed)s->dma_adc.fragsize && !s->dma_adc.endcleared) { clear_advance(s); s->dma_adc.endcleared = 1; } if (s->dma_dac.count + (signed)s->dma_dac.fragsize <= (signed)s->dma_dac.dmasize) wake_up(&s->dma_adc.wait); } } else { #endif hwptr = get_dmaadc(s) % s->dma_adc.dmasize; diff = (s->dma_adc.dmasize + hwptr - s->dma_adc.hwptr) % s->dma_adc.dmasize; s->dma_adc.hwptr = hwptr; s->dma_adc.total_bytes += diff; s->dma_adc.count += diff; if (s->dma_adc.count >= (signed)s->dma_adc.fragsize) wake_up(&s->dma_adc.wait); if (!s->dma_adc.mapped) { if (s->dma_adc.count > (signed)(s->dma_adc.dmasize - ((3 * s->dma_adc.fragsize) >> 1))) { pause_adc(s); s->dma_adc.error++; } } #ifdef DUAL_DAC } #endif } /* update DAC pointer */ if (s->dma_dac.ready) { hwptr = get_dmadac(s) % s->dma_dac.dmasize; diff = (s->dma_dac.dmasize + hwptr - s->dma_dac.hwptr) % s->dma_dac.dmasize; s->dma_dac.hwptr = hwptr; s->dma_dac.total_bytes += diff; if (s->dma_dac.mapped) { s->dma_dac.count += diff; if (s->dma_dac.count >= (signed)s->dma_dac.fragsize) wake_up(&s->dma_dac.wait); } else { s->dma_dac.count -= diff; if (s->dma_dac.count <= 0) { pause_dac(s); s->dma_dac.error++; } else if (s->dma_dac.count <= (signed)s->dma_dac.fragsize && !s->dma_dac.endcleared) { clear_advance(s); s->dma_dac.endcleared = 1; } if (s->dma_dac.count + (signed)s->dma_dac.fragsize <= (signed)s->dma_dac.dmasize) wake_up(&s->dma_dac.wait); } } } #ifdef CONFIG_SOUND_CMPCI_MIDI /* hold spinlock for the following! */ static void cm_handle_midi(struct cm_state *s) { unsigned char ch; int wake; wake = 0; while (!(inb(s->iomidi+1) & 0x80)) { ch = inb(s->iomidi); if (s->midi.icnt < MIDIINBUF) { s->midi.ibuf[s->midi.iwr] = ch; s->midi.iwr = (s->midi.iwr + 1) % MIDIINBUF; s->midi.icnt++; } wake = 1; } if (wake) wake_up(&s->midi.iwait); wake = 0; while (!(inb(s->iomidi+1) & 0x40) && s->midi.ocnt > 0) { outb(s->midi.obuf[s->midi.ord], s->iomidi); s->midi.ord = (s->midi.ord + 1) % MIDIOUTBUF; s->midi.ocnt--; if (s->midi.ocnt < MIDIOUTBUF-16) wake = 1; } if (wake) wake_up(&s->midi.owait); } #endif static void cm_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct cm_state *s = (struct cm_state *)dev_id; unsigned int intsrc, intstat; unsigned char mask = 0; /* fastpath out, to ease interrupt sharing */ intsrc = inl(s->iobase + CODEC_CMI_INT_STATUS); if (!(intsrc & 0x80000000)) return; spin_lock(&s->lock); intstat = inb(s->iobase + CODEC_CMI_INT_HLDCLR + 2); /* acknowledge interrupt */ if (intsrc & CM_INT_CH0) mask |= 1; if (intsrc & CM_INT_CH1) mask |= 2; outb(intstat & ~mask, s->iobase + CODEC_CMI_INT_HLDCLR + 2); outb(intstat | mask, s->iobase + CODEC_CMI_INT_HLDCLR + 2); cm_update_ptr(s); #ifdef CONFIG_SOUND_CMPCI_MIDI cm_handle_midi(s); #endif spin_unlock(&s->lock); } #ifdef CONFIG_SOUND_CMPCI_MIDI static void cm_midi_timer(unsigned long data) { struct cm_state *s = (struct cm_state *)data; unsigned long flags; spin_lock_irqsave(&s->lock, flags); cm_handle_midi(s); spin_unlock_irqrestore(&s->lock, flags); s->midi.timer.expires = jiffies+1; add_timer(&s->midi.timer); } #endif /* --------------------------------------------------------------------- */ static const char invalid_magic[] = KERN_CRIT "cm: invalid magic value\n"; #ifdef CONFIG_SOUND_CMPCI /* support multiple chips */ #define VALIDATE_STATE(s) #else #define VALIDATE_STATE(s) \ ({ \ if (!(s) || (s)->magic != CM_MAGIC) { \ printk(invalid_magic); \ return -ENXIO; \ } \ }) #endif /* --------------------------------------------------------------------- */ #define MT_4 1 #define MT_5MUTE 2 #define MT_4MUTEMONO 3 #define MT_6MUTE 4 #define MT_5MUTEMONO 5 static const struct { unsigned left; unsigned right; unsigned type; unsigned rec; unsigned play; } mixtable[SOUND_MIXER_NRDEVICES] = { [SOUND_MIXER_CD] = { DSP_MIX_CDVOLIDX_L, DSP_MIX_CDVOLIDX_R, MT_5MUTE, 0x04, 0x02 }, [SOUND_MIXER_LINE] = { DSP_MIX_LINEVOLIDX_L, DSP_MIX_LINEVOLIDX_R, MT_5MUTE, 0x10, 0x08 }, [SOUND_MIXER_MIC] = { DSP_MIX_MICVOLIDX, DSP_MIX_MICVOLIDX, MT_5MUTEMONO, 0x01, 0x01 }, [SOUND_MIXER_SYNTH] = { DSP_MIX_FMVOLIDX_L, DSP_MIX_FMVOLIDX_R, MT_5MUTE, 0x40, 0x00 }, [SOUND_MIXER_VOLUME] = { DSP_MIX_MASTERVOLIDX_L, DSP_MIX_MASTERVOLIDX_R, MT_5MUTE, 0x00, 0x00 }, [SOUND_MIXER_PCM] = { DSP_MIX_VOICEVOLIDX_L, DSP_MIX_VOICEVOLIDX_R, MT_5MUTE, 0x00, 0x00 } }; #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS static int return_mixval(struct cm_state *s, unsigned i, int *arg) { unsigned long flags; unsigned char l, r, rl, rr; spin_lock_irqsave(&s->lock, flags); l = rdmixer(s, mixtable[i].left); r = rdmixer(s, mixtable[i].right); spin_unlock_irqrestore(&s->lock, flags); switch (mixtable[i].type) { case MT_4: r &= 0xf; l &= 0xf; rl = 10 + 6 * (l & 15); rr = 10 + 6 * (r & 15); break; case MT_4MUTEMONO: rl = 55 - 3 * (l & 15); if (r & 0x10) rl += 45; rr = rl; r = l; break; case MT_5MUTEMONO: r = l; rl = 100 - 3 * ((l >> 3) & 31); rr = rl; break; case MT_5MUTE: default: rl = 100 - 3 * ((l >> 3) & 31); rr = 100 - 3 * ((r >> 3) & 31); break; case MT_6MUTE: rl = 100 - 3 * (l & 63) / 2; rr = 100 - 3 * (r & 63) / 2; break; } if (l & 0x80) rl = 0; if (r & 0x80) rr = 0; return put_user((rr << 8) | rl, arg); } #else /* OSS_DOCUMENTED_MIXER_SEMANTICS */ static const unsigned char volidx[SOUND_MIXER_NRDEVICES] = { [SOUND_MIXER_CD] = 1, [SOUND_MIXER_LINE] = 2, [SOUND_MIXER_MIC] = 3, [SOUND_MIXER_SYNTH] = 4, [SOUND_MIXER_VOLUME] = 5, [SOUND_MIXER_PCM] = 6 }; #endif /* OSS_DOCUMENTED_MIXER_SEMANTICS */ static unsigned mixer_recmask(struct cm_state *s) { unsigned long flags; int i, j, k; spin_lock_irqsave(&s->lock, flags); j = rdmixer(s, DSP_MIX_ADCMIXIDX_L); spin_unlock_irqrestore(&s->lock, flags); j &= 0x7f; for (k = i = 0; i < SOUND_MIXER_NRDEVICES; i++) if (j & mixtable[i].rec) k |= 1 << i; return k; } static int mixer_ioctl(struct cm_state *s, unsigned int cmd, unsigned long arg) { unsigned long flags; int i, val, j; unsigned char l, r, rl, rr; VALIDATE_STATE(s); if (cmd == SOUND_MIXER_INFO) { mixer_info info; strncpy(info.id, "cmpci", sizeof(info.id)); strncpy(info.name, "C-Media PCI", sizeof(info.name)); info.modify_counter = s->mix.modcnt; if (copy_to_user((void *)arg, &info, sizeof(info))) return -EFAULT; return 0; } if (cmd == SOUND_OLD_MIXER_INFO) { _old_mixer_info info; strncpy(info.id, "cmpci", sizeof(info.id)); strncpy(info.name, "C-Media cmpci", sizeof(info.name)); if (copy_to_user((void *)arg, &info, sizeof(info))) return -EFAULT; return 0; } if (cmd == OSS_GETVERSION) return put_user(SOUND_VERSION, (int *)arg); if (_IOC_TYPE(cmd) != 'M' || _IOC_SIZE(cmd) != sizeof(int)) return -EINVAL; if (_IOC_DIR(cmd) == _IOC_READ) { switch (_IOC_NR(cmd)) { case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */ return put_user(mixer_recmask(s), (int *)arg); case SOUND_MIXER_OUTSRC: /* Arg contains a bit for each recording source */ return put_user(mixer_recmask(s), (int *)arg);//need fix case SOUND_MIXER_DEVMASK: /* Arg contains a bit for each supported device */ for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++) if (mixtable[i].type) val |= 1 << i; return put_user(val, (int *)arg); case SOUND_MIXER_RECMASK: /* Arg contains a bit for each supported recording source */ for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++) if (mixtable[i].rec) val |= 1 << i; return put_user(val, (int *)arg); case SOUND_MIXER_OUTMASK: /* Arg contains a bit for each supported recording source */ for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++) if (mixtable[i].play) val |= 1 << i; return put_user(val, (int *)arg); case SOUND_MIXER_STEREODEVS: /* Mixer channels supporting stereo */ for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++) if (mixtable[i].type && mixtable[i].type != MT_4MUTEMONO) val |= 1 << i; return put_user(val, (int *)arg); case SOUND_MIXER_CAPS: return put_user(0, (int *)arg); default: i = _IOC_NR(cmd); if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].type) return -EINVAL; #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS return return_mixval(s, i, (int *)arg); #else /* OSS_DOCUMENTED_MIXER_SEMANTICS */ if (!volidx[i]) return -EINVAL; return put_user(s->mix.vol[volidx[i]-1], (int *)arg); #endif /* OSS_DOCUMENTED_MIXER_SEMANTICS */ } } if (_IOC_DIR(cmd) != (_IOC_READ|_IOC_WRITE)) return -EINVAL; s->mix.modcnt++; switch (_IOC_NR(cmd)) { case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */ get_user_ret(val, (int *)arg, -EFAULT); i = hweight32(val); for (j = i = 0; i < SOUND_MIXER_NRDEVICES; i++) { if (!(val & (1 << i))) continue; if (!mixtable[i].rec) { val &= ~(1 << i); continue; } j |= mixtable[i].rec; } spin_lock_irqsave(&s->lock, flags); wrmixer(s, DSP_MIX_ADCMIXIDX_L, j); wrmixer(s, DSP_MIX_ADCMIXIDX_R, (j & 1) | (j>>1)); spin_unlock_irqrestore(&s->lock, flags); return 0; case SOUND_MIXER_OUTSRC: /* Arg contains a bit for each recording source */ get_user_ret(val, (int *)arg, -EFAULT); for (j = i = 0; i < SOUND_MIXER_NRDEVICES; i++) { if (!(val & (1 << i))) continue; if (!mixtable[i].play) { val &= ~(1 << i); continue; } j |= mixtable[i].play; } spin_lock_irqsave(&s->lock, flags); frobindir(s, DSP_MIX_OUTMIXIDX, 0x1f, j); spin_unlock_irqrestore(&s->lock, flags); return 0; default: i = _IOC_NR(cmd); if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].type) return -EINVAL; get_user_ret(val, (int *)arg, -EFAULT); l = val & 0xff; r = (val >> 8) & 0xff; if (l > 100) l = 100; if (r > 100) r = 100; spin_lock_irqsave(&s->lock, flags); switch (mixtable[i].type) { case MT_4: if (l >= 10) l -= 10; if (r >= 10) r -= 10; frobindir(s, mixtable[i].left, 0xf0, l / 6); frobindir(s, mixtable[i].right, 0xf0, l / 6); break; case MT_4MUTEMONO: rl = (l < 4 ? 0 : (l - 5) / 3) & 31; rr = (rl >> 2) & 7; wrmixer(s, mixtable[i].left, rl<<3); outb((inb(s->iobase + CODEC_CMI_MIXER2) & ~0x0e) | rr<<1, s->iobase + CODEC_CMI_MIXER2); break; case MT_5MUTEMONO: r = l; rl = l < 4 ? 0 : (l - 5) / 3; rr = rl >> 2; wrmixer(s, mixtable[i].left, rl<<3); outb((inb(s->iobase + CODEC_CMI_MIXER2) & ~0x0e) | rr<<1, s->iobase + CODEC_CMI_MIXER2); break; case MT_5MUTE: rl = l < 4 ? 0 : (l - 5) / 3; rr = r < 4 ? 0 : (r - 5) / 3; wrmixer(s, mixtable[i].left, rl<<3); wrmixer(s, mixtable[i].right, rr<<3); break; case MT_6MUTE: if (l < 6) rl = 0x00; else rl = l * 2 / 3; if (r < 6) rr = 0x00; else rr = r * 2 / 3; wrmixer(s, mixtable[i].left, rl); wrmixer(s, mixtable[i].right, rr); break; } spin_unlock_irqrestore(&s->lock, flags); #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS return return_mixval(s, i, (int *)arg); #else /* OSS_DOCUMENTED_MIXER_SEMANTICS */ if (!volidx[i]) return -EINVAL; s->mix.vol[volidx[i]-1] = val; return put_user(s->mix.vol[volidx[i]-1], (int *)arg); #endif /* OSS_DOCUMENTED_MIXER_SEMANTICS */ } } /* --------------------------------------------------------------------- */ static loff_t cm_llseek(struct file *file, loff_t offset, int origin) { return -ESPIPE; } /* --------------------------------------------------------------------- */ static int cm_open_mixdev(struct inode *inode, struct file *file) { int minor = MINOR(inode->i_rdev); struct cm_state *s = devs; while (s && s->dev_mixer != minor) s = s->next; if (!s) return -ENODEV; VALIDATE_STATE(s); file->private_data = s; MOD_INC_USE_COUNT; return 0; } static int cm_release_mixdev(struct inode *inode, struct file *file) { struct cm_state *s = (struct cm_state *)file->private_data; VALIDATE_STATE(s); MOD_DEC_USE_COUNT; return 0; } static int cm_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { return mixer_ioctl((struct cm_state *)file->private_data, cmd, arg); } static /*const*/ struct file_operations cm_mixer_fops = { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) llseek: cm_llseek, ioctl: cm_ioctl_mixdev, open: cm_open_mixdev, release: cm_release_mixdev, #else &cm_llseek, NULL, /* read */ NULL, /* write */ NULL, /* readdir */ NULL, /* poll */ &cm_ioctl_mixdev, NULL, /* mmap */ &cm_open_mixdev, NULL, /* flush */ &cm_release_mixdev, NULL, /* fsync */ NULL, /* fasync */ NULL, /* check_media_change */ NULL, /* revalidate */ NULL, /* lock */ #endif }; int IntrOpen(void) { struct cm_state *s = devs; unsigned char fmtm = ~0, fmts = 0; /* Locate the /dev/dsp file descriptor */ while (s && ((s->dev_audio ^ 3) & ~0xf)) s = s->next; devaudio = s; down(&s->open_sem); if (s->open_mode & FMODE_WRITE) { up(&s->open_sem); devaudio = NULL; return -EBUSY; } if (!s->dma_dac.ready) { set_dac_rate(s, 8000); fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_DACSHIFT); set_fmt(s, fmtm, fmts); s->modem = 1; } s->open_mode |= FMODE_WRITE; up(&s->open_sem); MOD_INC_USE_COUNT; return 0; } EXPORT_SYMBOL(IntrOpen); int IntrClose(void) { struct cm_state *s = devaudio; if (!s) return -ENODEV; down(&s->open_sem); stop_dac(s); #ifndef FIXEDDMA dealloc_dmabuf(&s->dma_dac); #endif s->open_mode &= ~FMODE_WRITE; s->modem = 0; up(&s->open_sem); wake_up(&s->open_wait); MOD_DEC_USE_COUNT; devaudio = NULL; return 0; } EXPORT_SYMBOL(IntrClose); int IntrWrite(const char *buffer, int count) { struct cm_state *s = devaudio; ssize_t ret = 0; unsigned long flags; unsigned swptr; int cnt; if (!s) return -ENODEV; VALIDATE_STATE(s); if (s->dma_dac.mapped) return -ENXIO; if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0))) return ret; s->dma_dac.ossfragshift = 8; s->dma_dac.ossmaxfrags = 16; s->dma_dac.subdivision = 0; while (count > 0) { spin_lock_irqsave(&s->lock, flags); if (s->dma_dac.count < 0) { s->dma_dac.count = 0; s->dma_dac.swptr = s->dma_dac.hwptr; } swptr = s->dma_dac.swptr; cnt = s->dma_dac.dmasize-swptr; if (s->dma_dac.count + cnt > s->dma_dac.dmasize) cnt = s->dma_dac.dmasize - s->dma_dac.count; spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; if (cnt <= 0) { start_dac(s); return ret; } if (__copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt)) return ret ? ret : -EFAULT; swptr = (swptr + cnt) % s->dma_dac.dmasize; spin_lock_irqsave(&s->lock, flags); s->dma_dac.swptr = swptr; s->dma_dac.count += cnt; s->dma_dac.endcleared = 0; spin_unlock_irqrestore(&s->lock, flags); count -= cnt; buffer += cnt; ret += cnt; start_dac(s); } return ret; } EXPORT_SYMBOL(IntrWrite); /* --------------------------------------------------------------------- */ static int drain_dac(struct cm_state *s, int nonblock) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) DECLARE_WAITQUEUE(wait, current); #else struct wait_queue wait = { current, NULL }; #endif unsigned long flags; int count, tmo; if (s->dma_dac.mapped || !s->dma_dac.ready) return 0; current->state = TASK_INTERRUPTIBLE; add_wait_queue(&s->dma_dac.wait, &wait); for (;;) { spin_lock_irqsave(&s->lock, flags); count = s->dma_dac.count; spin_unlock_irqrestore(&s->lock, flags); if (count <= 0) break; if (signal_pending(current)) break; if (nonblock) { remove_wait_queue(&s->dma_dac.wait, &wait); current->state = TASK_RUNNING; return -EBUSY; } tmo = (count * HZ) / s->ratedac; tmo >>= sample_shift[(s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK]; if (!schedule_timeout(tmo ? : 1) && tmo) printk(KERN_DEBUG "cm: dma timed out??\n"); } remove_wait_queue(&s->dma_dac.wait, &wait); current->state = TASK_RUNNING; if (signal_pending(current)) return -ERESTARTSYS; return 0; } /* --------------------------------------------------------------------- */ static ssize_t cm_read(struct file *file, char *buffer, size_t count, loff_t *ppos) { struct cm_state *s = (struct cm_state *)file->private_data; ssize_t ret; unsigned long flags; unsigned swptr; int cnt; VALIDATE_STATE(s); if (ppos != &file->f_pos) return -ESPIPE; if (s->dma_adc.mapped) return -ENXIO; if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1))) return ret; if (!access_ok(VERIFY_WRITE, buffer, count)) return -EFAULT; ret = 0; #if 0 spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); spin_unlock_irqrestore(&s->lock, flags); #endif while (count > 0) { spin_lock_irqsave(&s->lock, flags); swptr = s->dma_adc.swptr; cnt = s->dma_adc.dmasize-swptr; if (s->dma_adc.count < cnt) cnt = s->dma_adc.count; spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; if (cnt <= 0) { start_adc(s); if (file->f_flags & O_NONBLOCK) return ret ? ret : -EAGAIN; if (!interruptible_sleep_on_timeout(&s->dma_adc.wait, HZ)) { printk(KERN_DEBUG "cm: read: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n", s->dma_adc.dmasize, s->dma_adc.fragsize, s->dma_adc.count, s->dma_adc.hwptr, s->dma_adc.swptr); stop_adc(s); spin_lock_irqsave(&s->lock, flags); set_dmaadc(s, s->dma_adc.rawphys, s->dma_adc.dmasamples); /* program sample counts */ outw(s->dma_adc.fragsamples-1, s->iobase + CODEC_CMI_CH1_FRAME2 + 2); s->dma_adc.count = s->dma_adc.hwptr = s->dma_adc.swptr = 0; spin_unlock_irqrestore(&s->lock, flags); } if (signal_pending(current)) return ret ? ret : -ERESTARTSYS; continue; } if (copy_to_user(buffer, s->dma_adc.rawbuf + swptr, cnt)) return ret ? ret : -EFAULT; swptr = (swptr + cnt) % s->dma_adc.dmasize; spin_lock_irqsave(&s->lock, flags); s->dma_adc.swptr = swptr; s->dma_adc.count -= cnt; spin_unlock_irqrestore(&s->lock, flags); count -= cnt; buffer += cnt; ret += cnt; start_adc(s); } return ret; } static ssize_t cm_write(struct file *file, const char *buffer, size_t count, loff_t *ppos) { struct cm_state *s = (struct cm_state *)file->private_data; ssize_t ret; unsigned long flags; unsigned swptr; int cnt; VALIDATE_STATE(s); if (ppos != &file->f_pos) return -ESPIPE; if (s->dma_dac.mapped) return -ENXIO; if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0))) return ret; if (!access_ok(VERIFY_READ, buffer, count)) return -EFAULT; ret = 0; #if 0 spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); spin_unlock_irqrestore(&s->lock, flags); #endif while (count > 0) { spin_lock_irqsave(&s->lock, flags); if (s->dma_dac.count < 0) { s->dma_dac.count = 0; s->dma_dac.swptr = s->dma_dac.hwptr; } swptr = s->dma_dac.swptr; cnt = s->dma_dac.dmasize-swptr; if (s->dma_dac.count + cnt > s->dma_dac.dmasize) cnt = s->dma_dac.dmasize - s->dma_dac.count; spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; if (cnt <= 0) { start_dac(s); if (file->f_flags & O_NONBLOCK) return ret ? ret : -EAGAIN; if (!interruptible_sleep_on_timeout(&s->dma_dac.wait, HZ)) { printk(KERN_DEBUG "cm: write: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n", s->dma_dac.dmasize, s->dma_dac.fragsize, s->dma_dac.count, s->dma_dac.hwptr, s->dma_dac.swptr); stop_dac(s); spin_lock_irqsave(&s->lock, flags); set_dmadac(s, s->dma_dac.rawphys, s->dma_dac.dmasamples); /* program sample counts */ outw(s->dma_dac.fragsamples-1, s->iobase + CODEC_CMI_CH0_FRAME2 + 2); s->dma_dac.count = s->dma_dac.hwptr = s->dma_dac.swptr = 0; spin_unlock_irqrestore(&s->lock, flags); } if (signal_pending(current)) return ret ? ret : -ERESTARTSYS; continue; } if (copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt)) return ret ? ret : -EFAULT; swptr = (swptr + cnt) % s->dma_dac.dmasize; spin_lock_irqsave(&s->lock, flags); s->dma_dac.swptr = swptr; s->dma_dac.count += cnt; s->dma_dac.endcleared = 0; spin_unlock_irqrestore(&s->lock, flags); count -= cnt; buffer += cnt; ret += cnt; start_dac(s); } return ret; } static unsigned int cm_poll(struct file *file, struct poll_table_struct *wait) { struct cm_state *s = (struct cm_state *)file->private_data; unsigned long flags; unsigned int mask = 0; VALIDATE_STATE(s); if (file->f_mode & FMODE_WRITE) poll_wait(file, &s->dma_dac.wait, wait); if (file->f_mode & FMODE_READ) poll_wait(file, &s->dma_adc.wait, wait); spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); if (file->f_mode & FMODE_READ) { if (s->dma_adc.count >= (signed)s->dma_adc.fragsize) mask |= POLLIN | POLLRDNORM; } if (file->f_mode & FMODE_WRITE) { if (s->dma_dac.mapped) { if (s->dma_dac.count >= (signed)s->dma_dac.fragsize) mask |= POLLOUT | POLLWRNORM; } else { if ((signed)s->dma_dac.dmasize >= s->dma_dac.count + (signed)s->dma_dac.fragsize) mask |= POLLOUT | POLLWRNORM; } } spin_unlock_irqrestore(&s->lock, flags); return mask; } static int cm_mmap(struct file *file, struct vm_area_struct *vma) { struct cm_state *s = (struct cm_state *)file->private_data; struct dmabuf *db; int ret; unsigned long size; VALIDATE_STATE(s); if (vma->vm_flags & VM_WRITE) { if ((ret = prog_dmabuf(s, 1)) != 0) return ret; db = &s->dma_dac; } else if (vma->vm_flags & VM_READ) { if ((ret = prog_dmabuf(s, 0)) != 0) return ret; db = &s->dma_adc; } else return -EINVAL; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) if (vma->vm_pgoff != 0) #else if (vma->vm_offset != 0) #endif return -EINVAL; size = vma->vm_end - vma->vm_start; if (size > (PAGE_SIZE << db->buforder)) return -EINVAL; if (remap_page_range(vma->vm_start, virt_to_phys(db->rawbuf), size, vma->vm_page_prot)) return -EAGAIN; db->mapped = 1; return 0; } static int cm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct cm_state *s = (struct cm_state *)file->private_data; unsigned long flags; audio_buf_info abinfo; count_info cinfo; int val, mapped, ret; unsigned char fmtm, fmtd; VALIDATE_STATE(s); mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) || ((file->f_mode & FMODE_READ) && s->dma_adc.mapped); switch (cmd) { case OSS_GETVERSION: return put_user(SOUND_VERSION, (int *)arg); case SNDCTL_DSP_SYNC: if (file->f_mode & FMODE_WRITE) return drain_dac(s, 0/*file->f_flags & O_NONBLOCK*/); return 0; case SNDCTL_DSP_SETDUPLEX: return 0; case SNDCTL_DSP_GETCAPS: return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER | DSP_CAP_MMAP, (int *)arg); case SNDCTL_DSP_RESET: if (file->f_mode & FMODE_WRITE) { stop_dac(s); synchronize_irq(); s->dma_dac.swptr = s->dma_dac.hwptr = s->dma_dac.count = s->dma_dac.total_bytes = 0; } if (file->f_mode & FMODE_READ) { stop_adc(s); synchronize_irq(); s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0; } return 0; case SNDCTL_DSP_SPEED: get_user_ret(val, (int *)arg, -EFAULT); if (val >= 0) { if (file->f_mode & FMODE_READ) { stop_adc(s); s->dma_adc.ready = 0; set_adc_rate(s, val); } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; set_dac_rate(s, val); } } return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, (int *)arg); case SNDCTL_DSP_STEREO: get_user_ret(val, (int *)arg, -EFAULT); fmtd = 0; fmtm = ~0; if (file->f_mode & FMODE_READ) { stop_adc(s); s->dma_adc.ready = 0; if (val) fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT; else fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT); } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; if (val) fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT; else fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_DACSHIFT); } set_fmt(s, fmtm, fmtd); return 0; case SNDCTL_DSP_CHANNELS: get_user_ret(val, (int *)arg, -EFAULT); if (val != 0) { fmtd = 0; fmtm = ~0; if (file->f_mode & FMODE_READ) { stop_adc(s); s->dma_adc.ready = 0; if (val >= 2) fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT; else fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT); } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; if (val >= 2) fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT; else fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_DACSHIFT); } set_fmt(s, fmtm, fmtd); } return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_STEREO << CM_CFMT_ADCSHIFT) : (CM_CFMT_STEREO << CM_CFMT_DACSHIFT))) ? 2 : 1, (int *)arg); case SNDCTL_DSP_GETFMTS: /* Returns a mask */ return put_user(AFMT_S16_LE|AFMT_U8, (int *)arg); case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/ get_user_ret(val, (int *)arg, -EFAULT); if (val != AFMT_QUERY) { fmtd = 0; fmtm = ~0; if (file->f_mode & FMODE_READ) { stop_adc(s); s->dma_adc.ready = 0; if (val == AFMT_S16_LE) fmtd |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT; else fmtm &= ~(CM_CFMT_16BIT << CM_CFMT_ADCSHIFT); } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; if (val == AFMT_S16_LE) fmtd |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT; else fmtm &= ~(CM_CFMT_16BIT << CM_CFMT_DACSHIFT); } set_fmt(s, fmtm, fmtd); } return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_16BIT << CM_CFMT_ADCSHIFT) : (CM_CFMT_16BIT << CM_CFMT_DACSHIFT))) ? AFMT_S16_LE : AFMT_U8, (int *)arg); case SNDCTL_DSP_POST: return 0; case SNDCTL_DSP_GETTRIGGER: val = 0; if (file->f_mode & FMODE_READ && s->enable & CM_CENABLE_RE) val |= PCM_ENABLE_INPUT; if (file->f_mode & FMODE_WRITE && s->enable & CM_CENABLE_PE) val |= PCM_ENABLE_OUTPUT; return put_user(val, (int *)arg); case SNDCTL_DSP_SETTRIGGER: get_user_ret(val, (int *)arg, -EFAULT); if (file->f_mode & FMODE_READ) { if (val & PCM_ENABLE_INPUT) { if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1))) return ret; start_adc(s); } else stop_adc(s); } if (file->f_mode & FMODE_WRITE) { if (val & PCM_ENABLE_OUTPUT) { if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0))) return ret; start_dac(s); } else stop_dac(s); } return 0; case SNDCTL_DSP_GETOSPACE: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; if (!(s->enable & CM_CENABLE_PE) && (val = prog_dmabuf(s, 0)) != 0) return val; spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); abinfo.fragsize = s->dma_dac.fragsize; abinfo.bytes = s->dma_dac.dmasize - s->dma_dac.count; abinfo.fragstotal = s->dma_dac.numfrag; abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0; case SNDCTL_DSP_GETISPACE: if (!(file->f_mode & FMODE_READ)) return -EINVAL; if (!(s->enable & CM_CENABLE_RE) && (val = prog_dmabuf(s, 1)) != 0) return val; spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); abinfo.fragsize = s->dma_adc.fragsize; abinfo.bytes = s->dma_adc.count; abinfo.fragstotal = s->dma_adc.numfrag; abinfo.fragments = abinfo.bytes >> s->dma_adc.fragshift; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0; case SNDCTL_DSP_NONBLOCK: file->f_flags |= O_NONBLOCK; return 0; case SNDCTL_DSP_GETODELAY: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); val = s->dma_dac.count; spin_unlock_irqrestore(&s->lock, flags); return put_user(val, (int *)arg); case SNDCTL_DSP_GETIPTR: if (!(file->f_mode & FMODE_READ)) return -EINVAL; spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); cinfo.bytes = s->dma_adc.total_bytes; cinfo.blocks = s->dma_adc.count >> s->dma_adc.fragshift; cinfo.ptr = s->dma_adc.hwptr; if (s->dma_adc.mapped) s->dma_adc.count &= s->dma_adc.fragsize-1; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *)arg, &cinfo, sizeof(cinfo)); case SNDCTL_DSP_GETOPTR: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); cinfo.bytes = s->dma_dac.total_bytes; cinfo.blocks = s->dma_dac.count >> s->dma_dac.fragshift; cinfo.ptr = s->dma_dac.hwptr; if (s->dma_dac.mapped) s->dma_dac.count &= s->dma_dac.fragsize-1; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *)arg, &cinfo, sizeof(cinfo)); case SNDCTL_DSP_GETBLKSIZE: if (file->f_mode & FMODE_WRITE) { if ((val = prog_dmabuf(s, 0))) return val; return put_user(s->dma_dac.fragsize, (int *)arg); } if ((val = prog_dmabuf(s, 1))) return val; return put_user(s->dma_adc.fragsize, (int *)arg); case SNDCTL_DSP_SETFRAGMENT: get_user_ret(val, (int *)arg, -EFAULT); if (file->f_mode & FMODE_READ) { s->dma_adc.ossfragshift = val & 0xffff; s->dma_adc.ossmaxfrags = (val >> 16) & 0xffff; if (s->dma_adc.ossfragshift < 4) s->dma_adc.ossfragshift = 4; if (s->dma_adc.ossfragshift > 15) s->dma_adc.ossfragshift = 15; if (s->dma_adc.ossmaxfrags < 4) s->dma_adc.ossmaxfrags = 4; } if (file->f_mode & FMODE_WRITE) { s->dma_dac.ossfragshift = val & 0xffff; s->dma_dac.ossmaxfrags = (val >> 16) & 0xffff; if (s->dma_dac.ossfragshift < 4) s->dma_dac.ossfragshift = 4; if (s->dma_dac.ossfragshift > 15) s->dma_dac.ossfragshift = 15; if (s->dma_dac.ossmaxfrags < 4) s->dma_dac.ossmaxfrags = 4; } return 0; case SNDCTL_DSP_SUBDIVIDE: if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision) || (file->f_mode & FMODE_WRITE && s->dma_dac.subdivision)) return -EINVAL; get_user_ret(val, (int *)arg, -EFAULT); if (val != 1 && val != 2 && val != 4) return -EINVAL; if (file->f_mode & FMODE_READ) s->dma_adc.subdivision = val; if (file->f_mode & FMODE_WRITE) s->dma_dac.subdivision = val; return 0; case SOUND_PCM_READ_RATE: return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, (int *)arg); case SOUND_PCM_READ_CHANNELS: return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_STEREO << CM_CFMT_ADCSHIFT) : (CM_CFMT_STEREO << CM_CFMT_DACSHIFT))) ? 2 : 1, (int *)arg); case SOUND_PCM_READ_BITS: return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_16BIT << CM_CFMT_ADCSHIFT) : (CM_CFMT_16BIT << CM_CFMT_DACSHIFT))) ? 16 : 8, (int *)arg); case SOUND_PCM_READ_FILTER: return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, (int *)arg); case SOUND_PCM_WRITE_FILTER: case SNDCTL_DSP_SETSYNCRO: return -EINVAL; } return mixer_ioctl(s, cmd, arg); } static int cm_open(struct inode *inode, struct file *file) { int minor = MINOR(inode->i_rdev); struct cm_state *s = devs; unsigned char fmtm = ~0, fmts = 0; while (s && ((s->dev_audio ^ minor) & ~0xf)) s = s->next; if (!s) return -ENODEV; VALIDATE_STATE(s); file->private_data = s; /* wait for device to become free */ down(&s->open_sem); while (s->open_mode & file->f_mode) { if (file->f_flags & O_NONBLOCK) { up(&s->open_sem); return -EBUSY; } up(&s->open_sem); interruptible_sleep_on(&s->open_wait); if (signal_pending(current)) return -ERESTARTSYS; down(&s->open_sem); } if (file->f_mode & FMODE_READ) { fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_ADCSHIFT); if ((minor & 0xf) == SND_DEV_DSP16) fmts |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT; s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags = s->dma_adc.subdivision = 0; set_adc_rate(s, 8000); } if (file->f_mode & FMODE_WRITE) { fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_DACSHIFT); if ((minor & 0xf) == SND_DEV_DSP16) fmts |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT; s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags = s->dma_dac.subdivision = 0; set_dac_rate(s, 8000); } set_fmt(s, fmtm, fmts); s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE); up(&s->open_sem); MOD_INC_USE_COUNT; return 0; } static int cm_release(struct inode *inode, struct file *file) { struct cm_state *s = (struct cm_state *)file->private_data; VALIDATE_STATE(s); if (file->f_mode & FMODE_WRITE) drain_dac(s, file->f_flags & O_NONBLOCK); down(&s->open_sem); if (file->f_mode & FMODE_WRITE) { stop_dac(s); #ifndef FIXEDDMA dealloc_dmabuf(&s->dma_dac); #endif } if (file->f_mode & FMODE_READ) { stop_adc(s); #ifndef FIXEDDMA dealloc_dmabuf(&s->dma_adc); #endif } s->open_mode &= (~file->f_mode) & (FMODE_READ|FMODE_WRITE); up(&s->open_sem); wake_up(&s->open_wait); MOD_DEC_USE_COUNT; return 0; } static /*const*/ struct file_operations cm_audio_fops = { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) llseek: cm_llseek, read: cm_read, write: cm_write, poll: cm_poll, ioctl: cm_ioctl, mmap: cm_mmap, open: cm_open, release: cm_release, #else &cm_llseek, &cm_read, &cm_write, NULL, /* readdir */ &cm_poll, &cm_ioctl, &cm_mmap, &cm_open, NULL, /* flush */ &cm_release, NULL, /* fsync */ NULL, /* fasync */ NULL, /* check_media_change */ NULL, /* revalidate */ NULL, /* lock */ #endif }; #ifdef DUAL_DAC static ssize_t cm_write_dual(struct file *file, const char *buffer, size_t count, loff_t *ppos) { struct cm_state *s = (struct cm_state *)file->private_data; ssize_t ret; unsigned long flags; unsigned swptr; int cnt; VALIDATE_STATE(s); if (ppos != &file->f_pos) return -ESPIPE; if (s->dma_dac.mapped) return -ENXIO; if (s->dma_adc.mapped) return -ENXIO; if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0))) return ret; if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1))) return ret; if (!access_ok(VERIFY_READ, buffer, count)) return -EFAULT; ret = 0; #if 0 spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); spin_unlock_irqrestore(&s->lock, flags); #endif while (count > 0) { spin_lock_irqsave(&s->lock, flags); if (s->dma_dac.count < 0) { s->dma_dac.count = 0; s->dma_dac.swptr = s->dma_dac.hwptr; } if (s->dma_adc.count < 0) { s->dma_adc.count = 0; s->dma_adc.swptr = s->dma_adc.hwptr; } swptr = s->dma_dac.swptr; cnt = s->dma_dac.dmasize-swptr; if (s->dma_dac.count + cnt > s->dma_dac.dmasize) cnt = s->dma_dac.dmasize - s->dma_dac.count; spin_unlock_irqrestore(&s->lock, flags); if (cnt > count / 2) cnt = count / 2; if (cnt <= 0) { start_dac(s); start_dac1(s); if (file->f_flags & O_NONBLOCK) return ret ? ret : -EAGAIN; if (!interruptible_sleep_on_timeout(&s->dma_dac.wait, HZ)) { printk(KERN_DEBUG "cm: write: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n", s->dma_dac.dmasize, s->dma_dac.fragsize, s->dma_dac.count, s->dma_dac.hwptr, s->dma_dac.swptr); stop_dac(s); stop_dac1(s); spin_lock_irqsave(&s->lock, flags); set_dmadac(s, s->dma_dac.rawphys, s->dma_dac.dmasamples); set_dmadac1(s, s->dma_adc.rawphys, s->dma_adc.dmasamples); /* program sample counts */ outw(s->dma_dac.fragsamples-1, s->iobase + CODEC_CMI_CH0_FRAME2 + 2); outw(s->dma_adc.fragsamples-1, s->iobase + CODEC_CMI_CH1_FRAME2 + 2); s->dma_adc.count = s->dma_adc.hwptr = s->dma_adc.swptr = 0; s->dma_dac.count = s->dma_dac.hwptr = s->dma_dac.swptr = 0; spin_unlock_irqrestore(&s->lock, flags); } if (signal_pending(current)) return ret ? ret : -ERESTARTSYS; continue; } #if 1 { int i; unsigned long *src, *dst0, *dst1; src = (unsigned long *) buffer; dst0 = (unsigned long *) (s->dma_dac.rawbuf + swptr); dst1 = (unsigned long *) (s->dma_adc.rawbuf + swptr); // copy left/right sample at one time for (i = 0; i <= cnt / 4; i++) { *dst0++ = *src++; *dst1++ = *src++; } } #else if (copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt)) return ret ? ret : -EFAULT; if (copy_from_user(s->dma_adc.rawbuf + swptr, buffer, cnt)) return ret ? ret : -EFAULT; #endif swptr = (swptr + cnt) % s->dma_dac.dmasize; spin_lock_irqsave(&s->lock, flags); s->dma_adc.swptr = s->dma_dac.swptr = swptr; s->dma_adc.count += cnt; s->dma_dac.count += cnt; s->dma_adc.endcleared = s->dma_dac.endcleared = 0; spin_unlock_irqrestore(&s->lock, flags); count -= cnt * 2; buffer += cnt * 2; ret += cnt * 2; start_dac(s); start_dac1(s); } return ret; } static unsigned int cm_poll_dual(struct file *file, struct poll_table_struct *wait) { struct cm_state *s = (struct cm_state *)file->private_data; unsigned long flags; unsigned int mask = 0; VALIDATE_STATE(s); if (file->f_mode & FMODE_WRITE) poll_wait(file, &s->dma_dac.wait, wait); if (file->f_mode & FMODE_READ) poll_wait(file, &s->dma_adc.wait, wait); spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); if (file->f_mode & FMODE_READ) { if (s->dma_adc.count >= (signed)s->dma_adc.fragsize) mask |= POLLIN | POLLRDNORM; } if (file->f_mode & FMODE_WRITE) { if (s->dma_dac.mapped) { if (s->dma_dac.count >= (signed)s->dma_dac.fragsize) mask |= POLLOUT | POLLWRNORM; } else { if ((signed)s->dma_dac.dmasize >= s->dma_dac.count + (signed)s->dma_dac.fragsize) mask |= POLLOUT | POLLWRNORM; } } spin_unlock_irqrestore(&s->lock, flags); return mask; } static int cm_mmap_dual(struct file *file, struct vm_area_struct *vma) { struct cm_state *s = (struct cm_state *)file->private_data; struct dmabuf *db; int ret; unsigned long size; VALIDATE_STATE(s); if (vma->vm_flags & VM_WRITE) { if ((ret = prog_dmabuf(s, 1)) != 0) return ret; db = &s->dma_dac; } else if (vma->vm_flags & VM_READ) { if ((ret = prog_dmabuf(s, 0)) != 0) return ret; db = &s->dma_adc; } else return -EINVAL; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) if (vma->vm_pgoff != 0) #else if (vma->vm_offset != 0) #endif return -EINVAL; size = vma->vm_end - vma->vm_start; if (size > (PAGE_SIZE << db->buforder)) return -EINVAL; if (remap_page_range(vma->vm_start, virt_to_phys(db->rawbuf), size, vma->vm_page_prot)) return -EAGAIN; db->mapped = 1; return 0; } static int cm_ioctl_dual(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct cm_state *s = (struct cm_state *)file->private_data; unsigned long flags; audio_buf_info abinfo; count_info cinfo; int val, mapped, ret; unsigned char fmtm, fmtd; VALIDATE_STATE(s); mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) || ((file->f_mode & FMODE_READ) && s->dma_adc.mapped); switch (cmd) { case OSS_GETVERSION: return put_user(SOUND_VERSION, (int *)arg); case SNDCTL_DSP_SYNC: if (file->f_mode & FMODE_WRITE) return drain_dac(s, 0/*file->f_flags & O_NONBLOCK*/); return 0; case SNDCTL_DSP_SETDUPLEX: return 0; case SNDCTL_DSP_GETCAPS: return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER | DSP_CAP_MMAP, (int *)arg); case SNDCTL_DSP_RESET: if (file->f_mode & FMODE_WRITE) { stop_dac(s); stop_dac1(s); synchronize_irq(); s->dma_dac.swptr = s->dma_dac.hwptr = s->dma_dac.count = s->dma_dac.total_bytes = 0; s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0; } return 0; case SNDCTL_DSP_SPEED: get_user_ret(val, (int *)arg, -EFAULT); if (val >= 0) { if (file->f_mode & FMODE_WRITE) { stop_dac(s); stop_dac1(s); s->dma_dac.ready = 0; s->dma_adc.ready = 0; set_dac_rate(s, val); set_dac1_rate(s, val); } } return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, (int *)arg); case SNDCTL_DSP_STEREO: get_user_ret(val, (int *)arg, -EFAULT); fmtd = 0; fmtm = ~0; if (file->f_mode & FMODE_WRITE) { stop_dac(s); stop_dac1(s); s->dma_dac.ready = 0; s->dma_adc.ready = 0; if (val) { fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT; fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT; } else { fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_DACSHIFT); fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT); } } set_fmt(s, fmtm, fmtd); return 0; case SNDCTL_DSP_CHANNELS: get_user_ret(val, (int *)arg, -EFAULT); if (val != 0) { fmtd = 0; fmtm = ~0; if (file->f_mode & FMODE_WRITE) { stop_dac(s); stop_dac1(s); s->dma_dac.ready = 0; s->dma_adc.ready = 0; if (val >= 2) { fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT; fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT; } else { fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_DACSHIFT); fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT); } } set_fmt(s, fmtm, fmtd); } return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_STEREO << CM_CFMT_ADCSHIFT) : (CM_CFMT_STEREO << CM_CFMT_DACSHIFT))) ? 2 : 1, (int *)arg); case SNDCTL_DSP_GETFMTS: /* Returns a mask */ return put_user(AFMT_S16_LE|AFMT_U8, (int *)arg); case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/ get_user_ret(val, (int *)arg, -EFAULT); if (val != AFMT_QUERY) { fmtd = 0; fmtm = ~0; if (file->f_mode & FMODE_WRITE) { stop_dac(s); stop_dac1(s); s->dma_dac.ready = 0; s->dma_adc.ready = 0; if (val == AFMT_S16_LE) { fmtd |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT; fmtd |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT; } else { fmtm &= ~(CM_CFMT_16BIT << CM_CFMT_DACSHIFT); fmtm &= ~(CM_CFMT_16BIT << CM_CFMT_ADCSHIFT); } } set_fmt(s, fmtm, fmtd); } return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_16BIT << CM_CFMT_ADCSHIFT) : (CM_CFMT_16BIT << CM_CFMT_DACSHIFT))) ? AFMT_S16_LE : AFMT_U8, (int *)arg); case SNDCTL_DSP_POST: return 0; case SNDCTL_DSP_GETTRIGGER: val = 0; if (file->f_mode & FMODE_WRITE && s->enable & CM_CENABLE_PE) val |= PCM_ENABLE_OUTPUT; return put_user(val, (int *)arg); case SNDCTL_DSP_SETTRIGGER: get_user_ret(val, (int *)arg, -EFAULT); if (file->f_mode & FMODE_WRITE) { if (val & PCM_ENABLE_OUTPUT) { if ((!s->dma_dac.ready && (ret = prog_dmabuf(s, 0))) || (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))) return ret; start_dac(s); start_dac1(s); } else { stop_dac(s); stop_dac1(s); } } return 0; case SNDCTL_DSP_GETOSPACE: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; if (!(s->enable & CM_CENABLE_PE) && (val = prog_dmabuf(s, 0) | prog_dmabuf(s, 1)) != 0) return val; spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); abinfo.fragsize = s->dma_dac.fragsize; abinfo.bytes = s->dma_dac.dmasize - s->dma_dac.count; abinfo.fragstotal = s->dma_dac.numfrag; abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift; abinfo.fragsize *= 2; abinfo.bytes *= 2; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0; case SNDCTL_DSP_NONBLOCK: file->f_flags |= O_NONBLOCK; return 0; case SNDCTL_DSP_GETODELAY: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); val = s->dma_dac.count; val *= 2; spin_unlock_irqrestore(&s->lock, flags); return put_user(val, (int *)arg); case SNDCTL_DSP_GETOPTR: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); cinfo.bytes = s->dma_dac.total_bytes; cinfo.blocks = s->dma_dac.count >> s->dma_dac.fragshift; cinfo.ptr = s->dma_dac.hwptr; cinfo.bytes *= 2; cinfo.ptr *= 2; if (s->dma_dac.mapped) s->dma_dac.count &= s->dma_dac.fragsize-1; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *)arg, &cinfo, sizeof(cinfo)); case SNDCTL_DSP_GETBLKSIZE: if (file->f_mode & FMODE_WRITE) { if ((val = prog_dmabuf(s, 0) | prog_dmabuf(s, 1))) return val; return put_user(2 * s->dma_dac.fragsize, (int *)arg); } if ((val = prog_dmabuf(s, 1))) return val; return put_user(2 * s->dma_adc.fragsize, (int *)arg); case SNDCTL_DSP_SETFRAGMENT: get_user_ret(val, (int *)arg, -EFAULT); if (file->f_mode & FMODE_WRITE) { s->dma_adc.ossfragshift = s->dma_dac.ossfragshift = val & 0xffff; s->dma_adc.ossmaxfrags = s->dma_dac.ossmaxfrags = (val >> 16) & 0xffff; if (s->dma_dac.ossfragshift < 4) s->dma_adc.ossfragshift = s->dma_dac.ossfragshift = 4; if (s->dma_dac.ossfragshift > 15) s->dma_adc.ossfragshift = s->dma_dac.ossfragshift = 15; if (s->dma_dac.ossmaxfrags < 4) s->dma_adc.ossmaxfrags = s->dma_dac.ossmaxfrags = 4; } return 0; case SNDCTL_DSP_SUBDIVIDE: if (file->f_mode & FMODE_WRITE && s->dma_dac.subdivision) return -EINVAL; get_user_ret(val, (int *)arg, -EFAULT); if (val != 1 && val != 2 && val != 4) return -EINVAL; if (file->f_mode & FMODE_WRITE) s->dma_adc.subdivision = s->dma_dac.subdivision = val; return 0; case SOUND_PCM_READ_RATE: return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, (int *)arg); case SOUND_PCM_READ_CHANNELS: return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_STEREO << CM_CFMT_ADCSHIFT) : (CM_CFMT_STEREO << CM_CFMT_DACSHIFT))) ? 2 : 1, (int *)arg); case SOUND_PCM_READ_BITS: return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_16BIT << CM_CFMT_ADCSHIFT) : (CM_CFMT_16BIT << CM_CFMT_DACSHIFT))) ? 16 : 8, (int *)arg); case SOUND_PCM_READ_FILTER: return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, (int *)arg); case SOUND_PCM_WRITE_FILTER: case SNDCTL_DSP_SETSYNCRO: return -EINVAL; } return mixer_ioctl(s, cmd, arg); } static int cm_open_dual(struct inode *inode, struct file *file) { int minor = MINOR(inode->i_rdev); struct cm_state *s = devs; unsigned char fmtm = ~0, fmts = 0; while (s && ((s->dev_dsp ^ minor) & ~0xf)) s = s->next; if (!s) return -ENODEV; VALIDATE_STATE(s); if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; file->private_data = s; /* wait for device to become free */ down(&s->open_sem); while (s->open_mode & file->f_mode) { if (file->f_flags & O_NONBLOCK) { up(&s->open_sem); return -EBUSY; } up(&s->open_sem); interruptible_sleep_on(&s->open_wait); if (signal_pending(current)) return -ERESTARTSYS; down(&s->open_sem); } if (file->f_mode & FMODE_WRITE) { fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_DACSHIFT); fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_ADCSHIFT); // the HW only support 16-bit stereo fmts |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT; fmts |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT; fmts |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT; fmts |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT; s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags = s->dma_dac.subdivision = 0; s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags = s->dma_adc.subdivision = 0; set_dac_rate(s, 8000); set_dac1_rate(s, 8000); } set_fmt(s, fmtm, fmts); s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE); s->dual_mode = 1; /* disable 4 channel mode (analog duplicate) */ if (s->four_ch) outb(inb(s->iobase + CODEC_CMI_MISC_CTRL + 3) & ~0x04, s->iobase + CODEC_CMI_MISC_CTRL + 3); /* turn on double DAC mode */ outb(inb(s->iobase + CODEC_CMI_MISC_CTRL + 2) | 0x80, s->iobase + CODEC_CMI_MISC_CTRL + 2); up(&s->open_sem); MOD_INC_USE_COUNT; return 0; } static int cm_release_dual(struct inode *inode, struct file *file) { struct cm_state *s = (struct cm_state *)file->private_data; VALIDATE_STATE(s); if (file->f_mode & FMODE_WRITE) drain_dac(s, file->f_flags & O_NONBLOCK); down(&s->open_sem); if (file->f_mode & FMODE_WRITE) { stop_dac(s); stop_dac1(s); #ifndef FIXEDDMA dealloc_dmabuf(&s->dma_dac); dealloc_dmabuf(&s->dma_adc); #endif } s->open_mode &= (~file->f_mode) & (FMODE_READ|FMODE_WRITE); s->dual_mode = 0; /* enable 4 channel mode (analog duplicate) */ if (s->four_ch) outb(inb(s->iobase + CODEC_CMI_MISC_CTRL + 3) | 0x04, s->iobase + CODEC_CMI_MISC_CTRL + 3); /* turn off double DAC mode */ outb(inb(s->iobase + CODEC_CMI_MISC_CTRL + 2) & ~0x80, s->iobase + CODEC_CMI_MISC_CTRL + 2); up(&s->open_sem); wake_up(&s->open_wait); MOD_DEC_USE_COUNT; return 0; } static /*const*/ struct file_operations cm_dsp_fops = { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) llseek: cm_llseek, write: cm_write_dual, poll: cm_poll_dual, ioctl: cm_ioctl_dual, mmap: cm_mmap_dual, open: cm_open_dual, release: cm_release_dual, #else &cm_llseek, NULL, &cm_write_dual, NULL, /* readdir */ &cm_poll_dual, &cm_ioctl_dual, &cm_mmap_dual, &cm_open_dual, NULL, /* flush */ &cm_release_dual, NULL, /* fsync */ NULL, /* fasync */ NULL, /* check_media_change */ NULL, /* revalidate */ NULL, /* lock */ #endif }; #endif #ifdef CONFIG_SOUND_CMPCI_MIDI /* --------------------------------------------------------------------- */ static ssize_t cm_midi_read(struct file *file, char *buffer, size_t count, loff_t *ppos) { struct cm_state *s = (struct cm_state *)file->private_data; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) DECLARE_WAITQUEUE(wait, current); #endif ssize_t ret; unsigned long flags; unsigned ptr; int cnt; VALIDATE_STATE(s); if (ppos != &file->f_pos) return -ESPIPE; if (!access_ok(VERIFY_WRITE, buffer, count)) return -EFAULT; ret = 0; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) add_wait_queue(&s->midi.iwait, &wait); #endif while (count > 0) { spin_lock_irqsave(&s->lock, flags); ptr = s->midi.ird; cnt = MIDIINBUF - ptr; if (s->midi.icnt < cnt) cnt = s->midi.icnt; spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; if (cnt <= 0) { if (file->f_flags & O_NONBLOCK) #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) { if (!ret) ret = -EAGAIN; break; } __set_current_state(TASK_INTERRUPTIBLE); schedule(); if (signal_pending(current)) { if (!ret) ret = -ERESTARTSYS; break; } #else return ret ? ret : -EAGAIN; interruptible_sleep_on(&s->midi.iwait); if (signal_pending(current)) return ret ? ret : -ERESTARTSYS; #endif continue; } if (copy_to_user(buffer, s->midi.ibuf + ptr, cnt)) #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) { if (!ret) ret = -EFAULT; break; } #else return ret ? ret : -EFAULT; #endif ptr = (ptr + cnt) % MIDIINBUF; spin_lock_irqsave(&s->lock, flags); s->midi.ird = ptr; s->midi.icnt -= cnt; spin_unlock_irqrestore(&s->lock, flags); count -= cnt; buffer += cnt; ret += cnt; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) break; #endif } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) __set_current_state(TASK_RUNNING); remove_wait_queue(&s->midi.iwait, &wait); #endif return ret; } static ssize_t cm_midi_write(struct file *file, const char *buffer, size_t count, loff_t *ppos) { struct cm_state *s = (struct cm_state *)file->private_data; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) DECLARE_WAITQUEUE(wait, current); #endif ssize_t ret; unsigned long flags; unsigned ptr; int cnt; VALIDATE_STATE(s); if (ppos != &file->f_pos) return -ESPIPE; if (!access_ok(VERIFY_READ, buffer, count)) return -EFAULT; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) if (count == 0) return 0; #endif ret = 0; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) add_wait_queue(&s->midi.owait, &wait); #endif while (count > 0) { spin_lock_irqsave(&s->lock, flags); ptr = s->midi.owr; cnt = MIDIOUTBUF - ptr; if (s->midi.ocnt + cnt > MIDIOUTBUF) cnt = MIDIOUTBUF - s->midi.ocnt; if (cnt <= 0) cm_handle_midi(s); spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; if (cnt <= 0) { if (file->f_flags & O_NONBLOCK) #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) { if (!ret) ret = -EAGAIN; break; } __set_current_state(TASK_INTERRUPTIBLE); schedule(); if (signal_pending(current)) { if (!ret) ret = -ERESTARTSYS; break; } #else return ret ? ret : -EAGAIN; interruptible_sleep_on(&s->midi.owait); if (signal_pending(current)) return ret ? ret : -ERESTARTSYS; #endif continue; } if (copy_from_user(s->midi.obuf + ptr, buffer, cnt)) #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) { if (!ret) ret = -EFAULT; break; } #else return ret ? ret : -EFAULT; #endif ptr = (ptr + cnt) % MIDIOUTBUF; spin_lock_irqsave(&s->lock, flags); s->midi.owr = ptr; s->midi.ocnt += cnt; spin_unlock_irqrestore(&s->lock, flags); count -= cnt; buffer += cnt; ret += cnt; spin_lock_irqsave(&s->lock, flags); cm_handle_midi(s); spin_unlock_irqrestore(&s->lock, flags); } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) __set_current_state(TASK_RUNNING); remove_wait_queue(&s->midi.owait, &wait); #endif return ret; } static unsigned int cm_midi_poll(struct file *file, struct poll_table_struct *wait) { struct cm_state *s = (struct cm_state *)file->private_data; unsigned long flags; unsigned int mask = 0; VALIDATE_STATE(s); if (file->f_mode & FMODE_WRITE) poll_wait(file, &s->midi.owait, wait); if (file->f_mode & FMODE_READ) poll_wait(file, &s->midi.iwait, wait); spin_lock_irqsave(&s->lock, flags); if (file->f_mode & FMODE_READ) { if (s->midi.icnt > 0) mask |= POLLIN | POLLRDNORM; } if (file->f_mode & FMODE_WRITE) { if (s->midi.ocnt < MIDIOUTBUF) mask |= POLLOUT | POLLWRNORM; } spin_unlock_irqrestore(&s->lock, flags); return mask; } static int cm_midi_open(struct inode *inode, struct file *file) { int minor = MINOR(inode->i_rdev); struct cm_state *s = devs; unsigned long flags; while (s && s->dev_midi != minor) s = s->next; if (!s) return -ENODEV; VALIDATE_STATE(s); file->private_data = s; /* wait for device to become free */ down(&s->open_sem); while (s->open_mode & (file->f_mode << FMODE_MIDI_SHIFT)) { if (file->f_flags & O_NONBLOCK) { up(&s->open_sem); return -EBUSY; } up(&s->open_sem); interruptible_sleep_on(&s->open_wait); if (signal_pending(current)) return -ERESTARTSYS; down(&s->open_sem); } spin_lock_irqsave(&s->lock, flags); if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) { s->midi.ird = s->midi.iwr = s->midi.icnt = 0; s->midi.ord = s->midi.owr = s->midi.ocnt = 0; /* enable MPU-401 */ outb(inb(s->iobase + CODEC_CMI_FUNCTRL1) | 4, s->iobase + CODEC_CMI_FUNCTRL1); outb(0xff, s->iomidi+1); /* reset command */ if (!(inb(s->iomidi+1) & 0x80)) inb(s->iomidi); outb(0x3f, s->iomidi+1); /* uart command */ if (!(inb(s->iomidi+1) & 0x80)) inb(s->iomidi); s->midi.ird = s->midi.iwr = s->midi.icnt = 0; init_timer(&s->midi.timer); s->midi.timer.expires = jiffies+1; s->midi.timer.data = (unsigned long)s; s->midi.timer.function = cm_midi_timer; add_timer(&s->midi.timer); } if (file->f_mode & FMODE_READ) { s->midi.ird = s->midi.iwr = s->midi.icnt = 0; } if (file->f_mode & FMODE_WRITE) { s->midi.ord = s->midi.owr = s->midi.ocnt = 0; } spin_unlock_irqrestore(&s->lock, flags); s->open_mode |= (file->f_mode << FMODE_MIDI_SHIFT) & (FMODE_MIDI_READ | FMODE_MIDI_WRITE); up(&s->open_sem); MOD_INC_USE_COUNT; return 0; } static int cm_midi_release(struct inode *inode, struct file *file) { struct cm_state *s = (struct cm_state *)file->private_data; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) DECLARE_WAITQUEUE(wait, current); #else struct wait_queue wait = { current, NULL }; #endif unsigned long flags; unsigned count, tmo; VALIDATE_STATE(s); if (file->f_mode & FMODE_WRITE) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) __set_current_state(TASK_INTERRUPTIBLE); #else current->state = TASK_INTERRUPTIBLE; #endif add_wait_queue(&s->midi.owait, &wait); for (;;) { spin_lock_irqsave(&s->lock, flags); count = s->midi.ocnt; spin_unlock_irqrestore(&s->lock, flags); if (count <= 0) break; if (signal_pending(current)) break; if (file->f_flags & O_NONBLOCK) { remove_wait_queue(&s->midi.owait, &wait); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) set_current_state(TASK_RUNNING); #else current->state = TASK_RUNNING; #endif return -EBUSY; } tmo = (count * HZ) / 3100; if (!schedule_timeout(tmo ? : 1) && tmo) printk(KERN_DEBUG "cm: midi timed out??\n"); } remove_wait_queue(&s->midi.owait, &wait); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) set_current_state(TASK_RUNNING); #else current->state = TASK_RUNNING; #endif } down(&s->open_sem); s->open_mode &= (~(file->f_mode << FMODE_MIDI_SHIFT)) & (FMODE_MIDI_READ|FMODE_MIDI_WRITE); spin_lock_irqsave(&s->lock, flags); if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) { del_timer(&s->midi.timer); outb(0xff, s->iomidi+1); /* reset command */ if (!(inb(s->iomidi+1) & 0x80)) inb(s->iomidi); /* disable MPU-401 */ outb(inb(s->iobase + CODEC_CMI_FUNCTRL1) & ~4, s->iobase + CODEC_CMI_FUNCTRL1); } spin_unlock_irqrestore(&s->lock, flags); up(&s->open_sem); wake_up(&s->open_wait); MOD_DEC_USE_COUNT; return 0; } static /*const*/ struct file_operations cm_midi_fops = { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) llseek: cm_llseek, read: cm_midi_read, write: cm_midi_write, poll: cm_midi_poll, open: cm_midi_open, release: cm_midi_release, #else &cm_llseek, &cm_midi_read, &cm_midi_write, NULL, /* readdir */ &cm_midi_poll, NULL, /* ioctl */ NULL, /* mmap */ &cm_midi_open, NULL, /* flush */ &cm_midi_release, NULL, /* fsync */ NULL, /* fasync */ NULL, /* check_media_change */ NULL, /* revalidate */ NULL, /* lock */ #endif }; #endif /* --------------------------------------------------------------------- */ #ifdef CONFIG_SOUND_CMPCI_FM static int cm_dmfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { static const unsigned char op_offset[18] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15 }; struct cm_state *s = (struct cm_state *)file->private_data; struct dm_fm_voice v; struct dm_fm_note n; struct dm_fm_params p; unsigned int io; unsigned int regb; switch (cmd) { case FM_IOCTL_RESET: for (regb = 0xb0; regb < 0xb9; regb++) { outb(regb, s->iosynth); outb(0, s->iosynth+1); outb(regb, s->iosynth+2); outb(0, s->iosynth+3); } return 0; case FM_IOCTL_PLAY_NOTE: if (copy_from_user(&n, (void *)arg, sizeof(n))) return -EFAULT; if (n.voice >= 18) return -EINVAL; if (n.voice >= 9) { regb = n.voice - 9; io = s->iosynth+2; } else { regb = n.voice; io = s->iosynth; } outb(0xa0 + regb, io); outb(n.fnum & 0xff, io+1); outb(0xb0 + regb, io); outb(((n.fnum >> 8) & 3) | ((n.octave & 7) << 2) | ((n.key_on & 1) << 5), io+1); return 0; case FM_IOCTL_SET_VOICE: if (copy_from_user(&v, (void *)arg, sizeof(v))) return -EFAULT; if (v.voice >= 18) return -EINVAL; regb = op_offset[v.voice]; io = s->iosynth + ((v.op & 1) << 1); outb(0x20 + regb, io); outb(((v.am & 1) << 7) | ((v.vibrato & 1) << 6) | ((v.do_sustain & 1) << 5) | ((v.kbd_scale & 1) << 4) | (v.harmonic & 0xf), io+1); outb(0x40 + regb, io); outb(((v.scale_level & 0x3) << 6) | (v.volume & 0x3f), io+1); outb(0x60 + regb, io); outb(((v.attack & 0xf) << 4) | (v.decay & 0xf), io+1); outb(0x80 + regb, io); outb(((v.sustain & 0xf) << 4) | (v.release & 0xf), io+1); outb(0xe0 + regb, io); outb(v.waveform & 0x7, io+1); if (n.voice >= 9) { regb = n.voice - 9; io = s->iosynth+2; } else { regb = n.voice; io = s->iosynth; } outb(0xc0 + regb, io); outb(((v.right & 1) << 5) | ((v.left & 1) << 4) | ((v.feedback & 7) << 1) | (v.connection & 1), io+1); return 0; case FM_IOCTL_SET_PARAMS: if (copy_from_user(&p, (void *)arg, sizeof(p))) return -EFAULT; outb(0x08, s->iosynth); outb((p.kbd_split & 1) << 6, s->iosynth+1); outb(0xbd, s->iosynth); outb(((p.am_depth & 1) << 7) | ((p.vib_depth & 1) << 6) | ((p.rhythm & 1) << 5) | ((p.bass & 1) << 4) | ((p.snare & 1) << 3) | ((p.tomtom & 1) << 2) | ((p.cymbal & 1) << 1) | (p.hihat & 1), s->iosynth+1); return 0; case FM_IOCTL_SET_OPL: outb(4, s->iosynth+2); outb(arg, s->iosynth+3); return 0; case FM_IOCTL_SET_MODE: outb(5, s->iosynth+2); outb(arg & 1, s->iosynth+3); return 0; default: return -EINVAL; } } static int cm_dmfm_open(struct inode *inode, struct file *file) { int minor = MINOR(inode->i_rdev); struct cm_state *s = devs; while (s && s->dev_dmfm != minor) s = s->next; if (!s) return -ENODEV; VALIDATE_STATE(s); file->private_data = s; /* wait for device to become free */ down(&s->open_sem); while (s->open_mode & FMODE_DMFM) { if (file->f_flags & O_NONBLOCK) { up(&s->open_sem); return -EBUSY; } up(&s->open_sem); interruptible_sleep_on(&s->open_wait); if (signal_pending(current)) return -ERESTARTSYS; down(&s->open_sem); } /* init the stuff */ outb(1, s->iosynth); outb(0x20, s->iosynth+1); /* enable waveforms */ outb(4, s->iosynth+2); outb(0, s->iosynth+3); /* no 4op enabled */ outb(5, s->iosynth+2); outb(1, s->iosynth+3); /* enable OPL3 */ s->open_mode |= FMODE_DMFM; up(&s->open_sem); MOD_INC_USE_COUNT; return 0; } static int cm_dmfm_release(struct inode *inode, struct file *file) { struct cm_state *s = (struct cm_state *)file->private_data; unsigned int regb; VALIDATE_STATE(s); down(&s->open_sem); s->open_mode &= ~FMODE_DMFM; for (regb = 0xb0; regb < 0xb9; regb++) { outb(regb, s->iosynth); outb(0, s->iosynth+1); outb(regb, s->iosynth+2); outb(0, s->iosynth+3); } up(&s->open_sem); wake_up(&s->open_wait); MOD_DEC_USE_COUNT; return 0; } static /*const*/ struct file_operations cm_dmfm_fops = { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) llseek: cm_llseek, ioctl: cm_dmfm_ioctl, open: cm_dmfm_open, release: cm_dmfm_release, #else &cm_llseek, NULL, /* read */ NULL, /* write */ NULL, /* readdir */ NULL, /* poll */ &cm_dmfm_ioctl, NULL, /* mmap */ &cm_dmfm_open, NULL, /* flush */ &cm_dmfm_release, NULL, /* fsync */ NULL, /* fasync */ NULL, /* check_media_change */ NULL, /* revalidate */ NULL, /* lock */ #endif }; #endif /* CONFIG_SOUND_CMPCI_FM */ /* --------------------------------------------------------------------- */ /* maximum number of devices */ #define NR_DEVICE 5 #if 0 static int reverb[NR_DEVICE] = { 0, }; static int wavetable[NR_DEVICE] = { 0, }; #endif /* --------------------------------------------------------------------- */ static struct initvol { int mixch; int vol; } initvol[] __initdata = { { SOUND_MIXER_WRITE_CD, 0x4040 }, { SOUND_MIXER_WRITE_LINE, 0x4040 }, { SOUND_MIXER_WRITE_MIC, 0x4040 }, { SOUND_MIXER_WRITE_SYNTH, 0x4040 }, { SOUND_MIXER_WRITE_VOLUME, 0x4040 }, { SOUND_MIXER_WRITE_PCM, 0x4040 } }; #ifdef CONFIG_SOUND_CMPCI_MIDI static int mpu_io = CONFIG_SOUND_CMPCI_MPUIO; #endif #ifdef CONFIG_SOUND_CMPCI_FM static int fm_io = CONFIG_SOUND_CMPCI_FMIO; #endif #ifdef CONFIG_SOUND_CMPCI_SPDIFLOOP static int spdif_loop = 1; #else static int spdif_loop = 0; #endif #ifdef CONFIG_SOUND_CMPCI_4CH static int four_ch = 1; #else static int four_ch = 0; #endif #ifdef CONFIG_SOUND_CMPCI_REAR static int rear_out = 1; #else static int rear_out = 0; #endif #ifdef CONFIG_SOUND_CMPCI_PCTEL static int modem = 1; #else static int modem = 0; #endif #ifdef CONFIG_SOUND_CMPCI_JOYSTICK static int joystick = 1; #else static int joystick = 0; #endif #ifdef MODULE MODULE_PARM(mpu_io, "i"); MODULE_PARM(fm_io, "i"); MODULE_PARM(spdif_loop, "i"); MODULE_PARM(four_ch, "i"); MODULE_PARM(rear_out, "i"); MODULE_PARM(modem, "i"); MODULE_PARM(joystick, "i"); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) int __init init_module(void) #else __initfunc(int init_module(void)) #endif #else #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) int __init init_cmpci(void) #else __initfunc(int init_cmpci(void)) #endif #endif { struct cm_state *s; struct pci_dev *pcidev = NULL; mm_segment_t fs; int i, val, index = 0; #ifdef CONFIG_SOUND_CMPCI_MIDI unsigned char reg_mask = 0; #endif struct { unsigned short deviceid; char *devicename; } devicetable[] = { { PCI_DEVICE_ID_CMEDIA_CM8338A, "CM8338A" }, { PCI_DEVICE_ID_CMEDIA_CM8338B, "CM8338B" }, { PCI_DEVICE_ID_CMEDIA_CM8738, "CM8738" }, { PCI_DEVICE_ID_CMEDIA_CM8738B, "CM8738B" }, }; char *devicename = "unknown"; #ifdef CONFIG_PCI if (!pci_present()) /* No PCI bus in this machine! */ #endif return -ENODEV; printk(KERN_INFO "cm: version $Revision: 4.3 $ time " __TIME__ " " __DATE__ "\n"); #if 0 if (!(wavetable_mem = __get_free_pages(GFP_KERNEL, 20-PAGE_SHIFT))) printk(KERN_INFO "cm: cannot allocate 1MB of contiguous nonpageable memory for wavetable data\n"); #endif while (index < NR_DEVICE && pcidev == NULL && ( (pcidev = pci_find_device(PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A, pcidev)) || (pcidev = pci_find_device(PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B, pcidev)) || (pcidev = pci_find_device(PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738, pcidev)))) { if (pcidev->irq == 0) continue; if (!(s = kmalloc(sizeof(struct cm_state), GFP_KERNEL))) { printk(KERN_WARNING "cm: out of memory\n"); continue; } /* search device name */ for (i = 0; i < sizeof(devicetable) / sizeof(devicetable[0]); i++) { if (devicetable[i].deviceid == pcidev->device) { devicename = devicetable[i].devicename; break; } } memset(s, 0, sizeof(struct cm_state)); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) init_waitqueue_head(&s->dma_adc.wait); init_waitqueue_head(&s->dma_dac.wait); init_waitqueue_head(&s->open_wait); init_waitqueue_head(&s->midi.iwait); init_waitqueue_head(&s->midi.owait); init_MUTEX(&s->open_sem); #else init_waitqueue(&s->dma_adc.wait); init_waitqueue(&s->dma_dac.wait); init_waitqueue(&s->open_wait); init_waitqueue(&s->midi.iwait); init_waitqueue(&s->midi.owait); s->open_sem = MUTEX; #endif spin_lock_init(&s->lock); s->magic = CM_MAGIC; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) s->iobase = pcidev->resource[0].start; #else s->iobase = pcidev->base_address[0] & PCI_BASE_ADDRESS_IO_MASK; #endif #ifdef CONFIG_SOUND_CMPCI_FM s->iosynth = fm_io; #endif #ifdef CONFIG_SOUND_CMPCI_MIDI s->iomidi = mpu_io; #endif #ifdef DUAL_DAC s->dual_mode = 0; s->hw_dual_dac = (pcidev->device == PCI_DEVICE_ID_CMEDIA_CM8738B); #endif s->four_ch = four_ch; if (s->iobase == 0) continue; s->irq = pcidev->irq; if (check_region(s->iobase, CM_EXTENT_CODEC)) { printk(KERN_ERR "cm: io ports %#x-%#x in use\n", s->iobase, s->iobase+CM_EXTENT_CODEC-1); goto err_region5; } request_region(s->iobase, CM_EXTENT_CODEC, "cmpci"); #ifdef CONFIG_SOUND_CMPCI_MIDI if (s->iomidi) { if (check_region(s->iomidi, CM_EXTENT_MIDI)) { printk(KERN_ERR "cm: io ports %#x-%#x in use\n", s->iomidi, s->iomidi+CM_EXTENT_MIDI-1); goto err_region4; } request_region(s->iomidi, CM_EXTENT_MIDI, "cmpci Midi"); /* set IO based at 0x330 */ switch (s->iomidi) { case 0x330: reg_mask = 0; break; case 0x320: reg_mask = 0x20; break; case 0x310: reg_mask = 0x40; break; case 0x300: reg_mask = 0x60; break; } outb((inb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3) & ~0x60) | reg_mask, s->iobase + CODEC_CMI_LEGACY_CTRL + 3); } #endif #ifdef CONFIG_SOUND_CMPCI_FM if (s->iosynth) { if (check_region(s->iosynth, CM_EXTENT_SYNTH)) { printk(KERN_ERR "cm: io ports %#x-%#x in use\n", s->iosynth, s->iosynth+CM_EXTENT_SYNTH-1); goto err_region1; } request_region(s->iosynth, CM_EXTENT_SYNTH, "cmpci FM"); /* enable FM */ outb(inb(s->iobase + CODEC_CMI_MISC_CTRL + 2) | 8, s->iobase + CODEC_CMI_MISC_CTRL); } #endif /* initialize codec registers */ outb(0, s->iobase + CODEC_CMI_INT_HLDCLR + 2); /* disable ints */ outb(0, s->iobase + CODEC_CMI_FUNCTRL0 + 2); /* disable channels */ /* reset mixer */ wrmixer(s, DSP_MIX_DATARESETIDX, 0); /* request irq */ if (request_irq(s->irq, cm_interrupt, SA_SHIRQ, "cmpci", s)) { printk(KERN_ERR "cm: irq %u in use\n", s->irq); goto err_irq; } printk(KERN_INFO "cm: found %s adapter at io %#06x irq %u\n", devicename, s->iobase, s->irq); /* register devices */ if ((s->dev_audio = register_sound_dsp(&cm_audio_fops, -1)) < 0) goto err_dev1; if ((s->dev_mixer = register_sound_mixer(&cm_mixer_fops, -1)) < 0) goto err_dev2; #ifdef CONFIG_SOUND_CMPCI_MIDI if ((s->dev_midi = register_sound_midi(&cm_midi_fops, -1)) < 0) goto err_dev3; #endif #ifdef CONFIG_SOUND_CMPCI_FM if ((s->dev_dmfm = register_sound_special(&cm_dmfm_fops, 15 /* ?? */)) < 0) goto err_dev4; #endif #ifdef DUAL_DAC if ((s->dev_dsp = register_sound_special(&cm_dsp_fops, 14)) < 0) goto err_dev5; #endif pci_set_master(pcidev); /* enable bus mastering */ /* initialize the chips */ fs = get_fs(); set_fs(KERNEL_DS); /* set mixer output */ frobindir(s, DSP_MIX_OUTMIXIDX, 0x1f, 0x1f); /* set mixer input */ val = SOUND_MASK_LINE|SOUND_MASK_SYNTH|SOUND_MASK_CD|SOUND_MASK_MIC; mixer_ioctl(s, SOUND_MIXER_WRITE_RECSRC, (unsigned long)&val); for (i = 0; i < sizeof(initvol)/sizeof(initvol[0]); i++) { val = initvol[i].vol; mixer_ioctl(s, initvol[i].mixch, (unsigned long)&val); } #if LINUX_VERSION_CODE < KERNEL_VERSION(2,3,0) set_fs(fs); #endif if (pcidev->device == PCI_DEVICE_ID_CMEDIA_CM8738) { s->modem = modem; if (modem) { /* enable FLINKON and disable FLINKOFF */ outb(inb((s->iobase + CODEC_CMI_MISC_CTRL) | 0x80) & ~0x40, s->iobase + CODEC_CMI_MISC_CTRL); printk(KERN_INFO "cm: modem function supported\n"); } /* enable SPDIF loop */ if (spdif_loop) { /* turn on spdif-in to spdif-out */ outb(inb(s->iobase + CODEC_CMI_FUNCTRL1) | 0x80, s->iobase + CODEC_CMI_FUNCTRL1); printk(KERN_INFO "cm: Enable SPDIF loop\n"); } else outb(inb(s->iobase + CODEC_CMI_FUNCTRL1) & ~0x80, s->iobase + CODEC_CMI_FUNCTRL1); /* enable 4 channels mode */ if (four_ch) { /* 4 channel mode (analog duplicate) */ outb(inb(s->iobase + CODEC_CMI_MISC_CTRL + 3) | 0x04, s->iobase + CODEC_CMI_MISC_CTRL + 3); printk(KERN_INFO "cm: Enable 4 channels mode\n"); /* has separate rear-out jack ? */ if (rear_out) { /* has separate rear out jack */ outb(inb(s->iobase + CODEC_CMI_MIXER1) & ~0x20, s->iobase + CODEC_CMI_MIXER1); } else { outb(inb(s->iobase + CODEC_CMI_MIXER1) | 0x20, s->iobase + CODEC_CMI_MIXER1); printk(KERN_INFO "cm: line-in routed as rear-out\n"); } } else outb(inb(s->iobase + CODEC_CMI_MISC_CTRL + 3) & ~0x04, s->iobase + CODEC_CMI_MISC_CTRL + 3); } /* enable joystick */ if (joystick) outb(inb(s->iobase + CODEC_CMI_FUNCTRL1) | 0x02, s->iobase + CODEC_CMI_FUNCTRL1); else outb(inb(s->iobase + CODEC_CMI_FUNCTRL1) & ~0x02, s->iobase + CODEC_CMI_FUNCTRL1); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,3,0) set_fs(fs); #endif /* queue it for later freeing */ s->next = devs; devs = s; index++; continue; #ifdef DUAL_DAC err_dev5: #endif #ifdef CONFIG_SOUND_CMPCI_FM unregister_sound_special(s->dev_dmfm); err_dev4: #endif #ifdef CONFIG_SOUND_CMPCI_MIDI unregister_sound_midi(s->dev_midi); err_dev3: #endif unregister_sound_mixer(s->dev_mixer); err_dev2: unregister_sound_dsp(s->dev_audio); err_dev1: printk(KERN_ERR "cm: cannot register misc device\n"); free_irq(s->irq, s); err_irq: #ifdef CONFIG_SOUND_CMPCI_FM if (s->iosynth) release_region(s->iosynth, CM_EXTENT_SYNTH); err_region1: #endif #ifdef CONFIG_SOUND_CMPCI_MIDI if (s->iomidi) release_region(s->iomidi, CM_EXTENT_MIDI); err_region4: #endif release_region(s->iobase, CM_EXTENT_CODEC); err_region5: kfree_s(s, sizeof(struct cm_state)); } if (!devs) { if (wavetable_mem) free_pages(wavetable_mem, 20-PAGE_SHIFT); return -ENODEV; } return 0; } /* --------------------------------------------------------------------- */ #ifdef MODULE #if 0 MODULE_PARM(wavetable, "1-" __MODULE_STRING(NR_DEVICE) "i"); MODULE_PARM_DESC(wavetable, "if 1 the wavetable synth is enabled"); #endif MODULE_AUTHOR("ChenLi Tien, cltien@home.com"); MODULE_DESCRIPTION("CMPCI Audio Driver"); void cleanup_module(void) { struct cm_state *s; while ((s = devs)) { devs = devs->next; outb(0, s->iobase + CODEC_CMI_INT_HLDCLR + 2); /* disable ints */ synchronize_irq(); outb(0, s->iobase + CODEC_CMI_FUNCTRL0 + 2); /* disable channels */ free_irq(s->irq, s); #ifdef FIXEDDMA dealloc_dmabuf(&s->dma_dac); dealloc_dmabuf(&s->dma_adc); #endif /* reset mixer */ wrmixer(s, DSP_MIX_DATARESETIDX, 0); release_region(s->iobase, CM_EXTENT_CODEC); #ifdef CONFIG_SOUND_CMPCI_MIDI if (s->iomidi) release_region(s->iomidi, CM_EXTENT_MIDI); #endif #ifdef CONFIG_SOUND_CMPCI_FM if (s->iosynth) release_region(s->iosynth, CM_EXTENT_SYNTH); #endif unregister_sound_dsp(s->dev_audio); unregister_sound_mixer(s->dev_mixer); #ifdef CONFIG_SOUND_CMPCI_MIDI unregister_sound_midi(s->dev_midi); #endif #ifdef CONFIG_SOUND_CMPCI_FM unregister_sound_special(s->dev_dmfm); #endif #ifdef DUAL_DAC unregister_sound_special(s->dev_dsp); #endif kfree_s(s, sizeof(struct cm_state)); } if (wavetable_mem) free_pages(wavetable_mem, 20-PAGE_SHIFT); printk(KERN_INFO "cm: unloading\n"); } #endif /* MODULE */
下载软件源码: