Linux下通用声卡驱动源码。(CM8738,CM2000,TE-734,Crystal系列)
Linux 下的通用声卡驱动源码:
/*****************************************************************************/
/*
* cmpci.c -- C-Media PCI audio driver.
*
* Copyright (C) 1999 ChenLi Tien (cltien@home.com)
* C-media support (support@cmedia.com.tw)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Special thanks to David C. Niemi, Jan Pfeifer
*
*
* Module command line parameters:
* none so far
*
*
* Supported devices:
* /dev/dsp standard /dev/dsp device, (mostly) OSS compatible
* /dev/mixer standard /dev/mixer device, (mostly) OSS compatible
* /dev/midi simple MIDI UART interface, no ioctl
*
* The card has both an FM and a Wavetable synth, but I have to figure
* out first how to drive them...
*
* Revision history
* 06.05.98 0.1 Initial release
* 10.05.98 0.2 Fixed many bugs, esp. ADC rate calculation
* First stab at a simple midi interface (no bells&whistles)
* 13.05.98 0.3 Fix stupid cut&paste error: set_adc_rate was called instead of
* set_dac_rate in the FMODE_WRITE case in cm_open
* Fix hwptr out of bounds (now mpg123 works)
* 14.05.98 0.4 Don't allow excessive interrupt rates
* 08.06.98 0.5 First release using Alan Cox' soundcore instead of miscdevice
* 03.08.98 0.6 Do not include modversions.h
* Now mixer behaviour can basically be selected between
* "OSS documented" and "OSS actual" behaviour
* 31.08.98 0.7 Fix realplayer problems - dac.count issues
* 10.12.98 0.8 Fix drain_dac trying to wait on not yet initialized DMA
* 16.12.98 0.9 Fix a few f_file & FMODE_ bugs
* 06.01.99 0.10 remove the silly SA_INTERRUPT flag.
* hopefully killed the egcs section type conflict
* 12.03.99 0.11 cinfo.blocks should be reset after GETxPTR ioctl.
* reported by Johan Maes <joma@telindus.be>
* 22.03.99 0.12 return EAGAIN instead of EBUSY when O_NONBLOCK
* read/write cannot be executed
* 18.08.99 1.5 Only deallocate DMA buffer when unloading.
* 02.09.99 1.6 Enable SPDIF LOOP
* Change the mixer read back
* 21.09.99 2.33 Use RCS version as driver version.
* Add support for modem, S/PDIF loop and 4 channels.
* (8738 only)
* Fix bug cause x11amp cannot play.
*
*/
/*****************************************************************************/
#define EXPORT_SYMTAB
#include <linux/version.h>
#include <linux/config.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/sound.h>
#include <linux/malloc.h>
#include <linux/soundcard.h>
#include <linux/pci.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <linux/init.h>
#include <linux/poll.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
#include <linux/spinlock.h>
#else
#include <asm/spinlock.h>
#endif
#include <asm/uaccess.h>
#include <asm/hardirq.h>
#include "dm.h"
/* --------------------------------------------------------------------- */
#undef OSS_DOCUMENTED_MIXER_SEMANTICS
/* --------------------------------------------------------------------- */
#ifndef PCI_VENDOR_ID_CMEDIA
#define PCI_VENDOR_ID_CMEDIA 0x13F6
#endif
#ifndef PCI_DEVICE_ID_CMEDIA_CM8338A
#define PCI_DEVICE_ID_CMEDIA_CM8338A 0x0100
#endif
#ifndef PCI_DEVICE_ID_CMEDIA_CM8338B
#define PCI_DEVICE_ID_CMEDIA_CM8338B 0x0101
#endif
#ifndef PCI_DEVICE_ID_CMEDIA_CM8738
#define PCI_DEVICE_ID_CMEDIA_CM8738 0x0111
#endif
#ifndef PCI_DEVICE_ID_CMEDIA_CM8738B
#define PCI_DEVICE_ID_CMEDIA_CM8738B 0x0112
#endif
#define CM_MAGIC ((PCI_VENDOR_ID_CMEDIA<<16)|PCI_DEVICE_ID_CMEDIA_CM8338A)
/*
* CM8338 registers definition
*/
#define CODEC_CMI_FUNCTRL0 (0x00)
#define CODEC_CMI_FUNCTRL1 (0x04)
#define CODEC_CMI_CHFORMAT (0x08)
#define CODEC_CMI_INT_HLDCLR (0x0C)
#define CODEC_CMI_INT_STATUS (0x10)
#define CODEC_CMI_LEGACY_CTRL (0x14)
#define CODEC_CMI_MISC_CTRL (0x18)
#define CODEC_CMI_TDMA_POS (0x1C)
#define CODEC_CMI_MIXER (0x20)
#define CODEC_SB16_DATA (0x22)
#define CODEC_SB16_ADDR (0x23)
#define CODEC_CMI_MIXER1 (0x24)
#define CODEC_CMI_MIXER2 (0x25)
#define CODEC_CMI_AUX_VOL (0x26)
#define CODEC_CMI_MISC (0x27)
#define CODEC_CMI_AC97 (0x28)
#define CODEC_CMI_CH0_FRAME1 (0x80)
#define CODEC_CMI_CH0_FRAME2 (0x84)
#define CODEC_CMI_CH1_FRAME1 (0x88)
#define CODEC_CMI_CH1_FRAME2 (0x8C)
#define CODEC_CMI_EXT_REG (0xF0)
#define UCHAR unsigned char
/*
** Mixer registers for SB16
*/
#define DSP_MIX_DATARESETIDX ((UCHAR)(0x00))
#define DSP_MIX_MASTERVOLIDX_L ((UCHAR)(0x30))
#define DSP_MIX_MASTERVOLIDX_R ((UCHAR)(0x31))
#define DSP_MIX_VOICEVOLIDX_L ((UCHAR)(0x32))
#define DSP_MIX_VOICEVOLIDX_R ((UCHAR)(0x33))
#define DSP_MIX_FMVOLIDX_L ((UCHAR)(0x34))
#define DSP_MIX_FMVOLIDX_R ((UCHAR)(0x35))
#define DSP_MIX_CDVOLIDX_L ((UCHAR)(0x36))
#define DSP_MIX_CDVOLIDX_R ((UCHAR)(0x37))
#define DSP_MIX_LINEVOLIDX_L ((UCHAR)(0x38))
#define DSP_MIX_LINEVOLIDX_R ((UCHAR)(0x39))
#define DSP_MIX_MICVOLIDX ((UCHAR)(0x3A))
#define DSP_MIX_SPKRVOLIDX ((UCHAR)(0x3B))
#define DSP_MIX_OUTMIXIDX ((UCHAR)(0x3C))
#define DSP_MIX_ADCMIXIDX_L ((UCHAR)(0x3D))
#define DSP_MIX_ADCMIXIDX_R ((UCHAR)(0x3E))
#define DSP_MIX_INGAINIDX_L ((UCHAR)(0x3F))
#define DSP_MIX_INGAINIDX_R ((UCHAR)(0x40))
#define DSP_MIX_OUTGAINIDX_L ((UCHAR)(0x41))
#define DSP_MIX_OUTGAINIDX_R ((UCHAR)(0x42))
#define DSP_MIX_AGCIDX ((UCHAR)(0x43))
#define DSP_MIX_TREBLEIDX_L ((UCHAR)(0x44))
#define DSP_MIX_TREBLEIDX_R ((UCHAR)(0x45))
#define DSP_MIX_BASSIDX_L ((UCHAR)(0x46))
#define DSP_MIX_BASSIDX_R ((UCHAR)(0x47))
#define CM_CH0_RESET 0x04
#define CM_CH1_RESET 0x08
#define CM_EXTENT_CODEC 0x100
#define CM_EXTENT_MIDI 0x2
#define CM_EXTENT_SYNTH 0x4
#define CM_INT_CH0 1
#define CM_INT_CH1 2
#define CM_CFMT_STEREO 0x01
#define CM_CFMT_16BIT 0x02
#define CM_CFMT_MASK 0x03
#define CM_CFMT_DACSHIFT 0
#define CM_CFMT_ADCSHIFT 2
static const unsigned sample_size[] = { 1, 2, 2, 4 };
static const unsigned sample_shift[] = { 0, 1, 1, 2 };
#define CM_CENABLE_RE 0x2
#define CM_CENABLE_PE 0x1
/* MIDI buffer sizes */
#define MIDIINBUF 256
#define MIDIOUTBUF 256
#define FMODE_MIDI_SHIFT 2
#define FMODE_MIDI_READ (FMODE_READ << FMODE_MIDI_SHIFT)
#define FMODE_MIDI_WRITE (FMODE_WRITE << FMODE_MIDI_SHIFT)
#define FMODE_DMFM 0x10
#define SND_DEV_DSP16 5
#ifdef CONFIG_SOUND_CMPCI_4CH
#define DUAL_DAC
#endif
#ifdef DUAL_DAC
#define set_dac1_rate set_adc_rate
#define stop_dac1 stop_adc
#define get_dmadac1 get_dmaadc
#endif
/* --------------------------------------------------------------------- */
struct cm_state {
/* magic */
unsigned int magic;
/* we keep cm cards in a linked list */
struct cm_state *next;
/* soundcore stuff */
int dev_audio;
int dev_mixer;
#ifdef DUAL_DAC
int dev_dsp;
int dual_mode;
int hw_dual_dac;
#endif
int four_ch;
int dev_midi;
int dev_dmfm;
/* hardware resources */
unsigned int iosb, iobase, iosynth, iomidi, iogame, irq;
/* mixer stuff */
struct {
unsigned int modcnt;
#ifndef OSS_DOCUMENTED_MIXER_SEMANTICS
unsigned short vol[13];
#endif /* OSS_DOCUMENTED_MIXER_SEMANTICS */
} mix;
/* wave stuff */
unsigned int rateadc, ratedac;
unsigned char fmt, enable;
spinlock_t lock;
struct semaphore open_sem;
mode_t open_mode;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
wait_queue_head_t open_wait;
#else
struct wait_queue *open_wait;
#endif
struct dmabuf {
void *rawbuf;
unsigned rawphys;
unsigned buforder;
unsigned numfrag;
unsigned fragshift;
unsigned hwptr, swptr;
unsigned total_bytes;
int count;
unsigned error; /* over/underrun */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
wait_queue_head_t wait;
#else
struct wait_queue *wait;
#endif
/* redundant, but makes calculations easier */
unsigned fragsize;
unsigned dmasize;
unsigned fragsamples;
unsigned dmasamples;
/* OSS stuff */
unsigned mapped:1;
unsigned ready:1;
unsigned endcleared:1;
unsigned ossfragshift;
int ossmaxfrags;
unsigned subdivision;
} dma_dac, dma_adc;
/* midi stuff */
struct {
unsigned ird, iwr, icnt;
unsigned ord, owr, ocnt;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
wait_queue_head_t iwait;
wait_queue_head_t owait;
#else
struct wait_queue *iwait;
struct wait_queue *owait;
#endif
struct timer_list timer;
unsigned char ibuf[MIDIINBUF];
unsigned char obuf[MIDIOUTBUF];
} midi;
/* misc stuff */
int modem;
};
/* --------------------------------------------------------------------- */
static struct cm_state *devs = NULL;
static struct cm_state *devaudio = NULL;
static unsigned long wavetable_mem = 0;
/* --------------------------------------------------------------------- */
extern __inline__ unsigned ld2(unsigned int x)
{
unsigned r = 0;
if (x >= 0x10000) {
x >>= 16;
r += 16;
}
if (x >= 0x100) {
x >>= 8;
r += 8;
}
if (x >= 0x10) {
x >>= 4;
r += 4;
}
if (x >= 4) {
x >>= 2;
r += 2;
}
if (x >= 2)
r++;
return r;
}
/*
* hweightN: returns the hamming weight (i.e. the number
* of bits set) of a N-bit word
*/
#ifdef hweight32
#undef hweight32
#endif
extern __inline__ unsigned int hweight32(unsigned int w)
{
unsigned int res = (w & 0x55555555) + ((w >> 1) & 0x55555555);
res = (res & 0x33333333) + ((res >> 2) & 0x33333333);
res = (res & 0x0F0F0F0F) + ((res >> 4) & 0x0F0F0F0F);
res = (res & 0x00FF00FF) + ((res >> 8) & 0x00FF00FF);
return (res & 0x0000FFFF) + ((res >> 16) & 0x0000FFFF);
}
/* --------------------------------------------------------------------- */
/*
* Why use byte IO? Nobody knows, but S3 does it also in their Windows driver.
*/
#undef DMABYTEIO
static void set_dmadac(struct cm_state *s, unsigned int addr, unsigned int count)
{
count--;
outl(addr, s->iobase + CODEC_CMI_CH0_FRAME1);
outw(count, s->iobase + CODEC_CMI_CH0_FRAME2);
outb(inb(s->iobase + CODEC_CMI_FUNCTRL0) & ~1, s->iobase + CODEC_CMI_FUNCTRL0);
}
static void set_dmadac1(struct cm_state *s, unsigned int addr, unsigned int count)
{
count--;
outl(addr, s->iobase + CODEC_CMI_CH1_FRAME1);
outw(count, s->iobase + CODEC_CMI_CH1_FRAME2);
outb(inb(s->iobase + CODEC_CMI_FUNCTRL0) & ~2, s->iobase + CODEC_CMI_FUNCTRL0);
}
static void set_dmaadc(struct cm_state *s, unsigned int addr, unsigned int count)
{
count--;
outl(addr, s->iobase + CODEC_CMI_CH1_FRAME1);
outw(count, s->iobase + CODEC_CMI_CH1_FRAME2);
outb(inb(s->iobase + CODEC_CMI_FUNCTRL0) | 2, s->iobase + CODEC_CMI_FUNCTRL0);
}
extern __inline__ unsigned get_dmadac(struct cm_state *s)
{
unsigned int curr_addr;
#if 1
curr_addr = inw(s->iobase + CODEC_CMI_CH0_FRAME2) + 1;
curr_addr <<= sample_shift[(s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK];
curr_addr = s->dma_dac.dmasize - curr_addr;
#else
curr_addr = inl(s->iobase + CODEC_CMI_CH0_FRAME1);
curr_addr &= ~(sample_size[(s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK]-1);
curr_addr -= s->dma_dac.rawphys;
#endif
return curr_addr;
}
extern __inline__ unsigned get_dmaadc(struct cm_state *s)
{
unsigned int curr_addr;
#if 1
curr_addr = inw(s->iobase + CODEC_CMI_CH1_FRAME2) + 1;
curr_addr <<= sample_shift[(s->fmt >> CM_CFMT_ADCSHIFT) & CM_CFMT_MASK];
curr_addr = s->dma_adc.dmasize - curr_addr;
#else
curr_addr = inl(s->iobase + CODEC_CMI_CH1_FRAME1);
curr_addr &= ~(sample_size[(s->fmt >> CM_CFMT_ADCSHIFT) & CM_CFMT_MASK]-1);
curr_addr -= s->dma_adc.rawphys;
#endif
return curr_addr;
}
static void wrmixer(struct cm_state *s, unsigned char idx, unsigned char data)
{
outb(idx, s->iobase + CODEC_SB16_ADDR);
outb(data, s->iobase + CODEC_SB16_DATA);
}
static unsigned char rdmixer(struct cm_state *s, unsigned char idx)
{
unsigned char v;
outb(idx, s->iobase + CODEC_SB16_ADDR);
v = inb(s->iobase + CODEC_SB16_DATA);
return v;
}
static void set_fmt(struct cm_state *s, unsigned char mask, unsigned char data)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
if (mask)
s->fmt = inb(s->iobase + CODEC_CMI_CHFORMAT);
s->fmt = (s->fmt & mask) | data;
outb(s->fmt, s->iobase + CODEC_CMI_CHFORMAT);
spin_unlock_irqrestore(&s->lock, flags);
}
static void frobindir(struct cm_state *s, unsigned char idx, unsigned char mask, unsigned char data)
{
outb(idx, s->iobase + CODEC_SB16_ADDR);
outb((inb(s->iobase + CODEC_SB16_DATA) & mask) | data, s->iobase + CODEC_SB16_DATA);
}
static struct {
unsigned rate;
unsigned lower;
unsigned upper;
unsigned char freq;
} rate_lookup[] =
{
{ 5512, (0 + 5512) / 2, (5512 + 8000) / 2, 0 },
{ 8000, (5512 + 8000) / 2, (8000 + 11025) / 2, 4 },
{ 11025, (8000 + 11025) / 2, (11025 + 16000) / 2, 1 },
{ 16000, (11025 + 16000) / 2, (16000 + 22050) / 2, 5 },
{ 22050, (16000 + 22050) / 2, (22050 + 32000) / 2, 2 },
{ 32000, (22050 + 32000) / 2, (32000 + 44100) / 2, 6 },
{ 44100, (32000 + 44100) / 2, (44100 + 48000) / 2, 3 },
{ 48000, (44100 + 48000) / 2, 48000, 7 }
};
static void set_dac_rate(struct cm_state *s, unsigned rate)
{
unsigned long flags;
unsigned char freq = 4, val;
int i;
if (rate > 48000)
rate = 48000;
if (rate < 5512)
rate = 5512;
for (i = 0; i < sizeof(rate_lookup) / sizeof(rate_lookup[0]); i++)
{
if (rate > rate_lookup[i].lower && rate <= rate_lookup[i].upper)
{
rate = rate_lookup[i].rate;
freq = rate_lookup[i].freq;
break;
}
}
s->ratedac = rate;
freq <<= 2;
spin_lock_irqsave(&s->lock, flags);
val = inb(s->iobase + CODEC_CMI_FUNCTRL1 + 1) & ~0x1c;
outb(val | freq, s->iobase + CODEC_CMI_FUNCTRL1 + 1);
spin_unlock_irqrestore(&s->lock, flags);
}
static void set_adc_rate(struct cm_state *s, unsigned rate)
{
unsigned long flags;
unsigned char freq = 4, val;
int i;
if (rate > 48000)
rate = 48000;
if (rate < 5512)
rate = 5512;
for (i = 0; i < sizeof(rate_lookup) / sizeof(rate_lookup[0]); i++)
{
if (rate > rate_lookup[i].lower && rate <= rate_lookup[i].upper)
{
rate = rate_lookup[i].rate;
freq = rate_lookup[i].freq;
break;
}
}
s->rateadc = rate;
freq <<= 5;
spin_lock_irqsave(&s->lock, flags);
val = inb(s->iobase + CODEC_CMI_FUNCTRL1 + 1) & ~0xe0;
outb(val | freq, s->iobase + CODEC_CMI_FUNCTRL1 + 1);
spin_unlock_irqrestore(&s->lock, flags);
}
/* --------------------------------------------------------------------- */
static inline void reset_adc(struct cm_state *s)
{
/* reset bus master */
outb(s->enable | CM_CH1_RESET, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
outb(s->enable & ~CM_CH1_RESET, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
}
static inline void reset_dac(struct cm_state *s)
{
/* reset bus master */
outb(s->enable | CM_CH0_RESET, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
outb(s->enable & ~CM_CH0_RESET, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
}
static inline void pause_adc(struct cm_state *s)
{
outb(inb(s->iobase + CODEC_CMI_FUNCTRL0) | 8, s->iobase + CODEC_CMI_FUNCTRL0);
}
static inline void pause_dac(struct cm_state *s)
{
outb(inb(s->iobase + CODEC_CMI_FUNCTRL0) | 4, s->iobase + CODEC_CMI_FUNCTRL0);
}
extern inline void disable_adc(struct cm_state *s)
{
/* disable channel */
s->enable &= ~CM_CENABLE_RE;
outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
reset_adc(s);
}
extern inline void disable_dac(struct cm_state *s)
{
/* disable channel */
s->enable &= ~CM_CENABLE_PE;
outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
reset_dac(s);
}
extern inline void enable_adc(struct cm_state *s)
{
if (!(s->enable & CM_CENABLE_RE))
{
/* enable channel */
s->enable |= CM_CENABLE_RE;
outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
}
else
{
outb(inb(s->iobase + CODEC_CMI_FUNCTRL0) & ~8, s->iobase + CODEC_CMI_FUNCTRL0);
}
}
extern inline void enable_dac(struct cm_state *s)
{
if (!(s->enable & CM_CENABLE_PE))
{
/* enable channel */
s->enable |= CM_CENABLE_PE;
outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
}
else
{
outb(inb(s->iobase + CODEC_CMI_FUNCTRL0) & ~4, s->iobase + CODEC_CMI_FUNCTRL0);
}
}
extern inline void stop_adc(struct cm_state *s)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
if (s->enable & CM_CENABLE_RE)
{
/* disable interrupt */
outb(inb(s->iobase + CODEC_CMI_INT_HLDCLR + 2) & ~2, s->iobase + CODEC_CMI_INT_HLDCLR + 2);
disable_adc(s);
}
spin_unlock_irqrestore(&s->lock, flags);
}
extern inline void stop_dac(struct cm_state *s)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
if (s->enable & CM_CENABLE_PE)
{
/* disable interrupt */
outb(inb(s->iobase + CODEC_CMI_INT_HLDCLR + 2) & ~1, s->iobase + CODEC_CMI_INT_HLDCLR + 2);
disable_dac(s);
}
spin_unlock_irqrestore(&s->lock, flags);
}
static void start_dac(struct cm_state *s)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
if ((s->dma_dac.mapped || s->dma_dac.count > 0) && s->dma_dac.ready) {
/* enable interrupt */
outb(inb(s->iobase + CODEC_CMI_INT_HLDCLR + 2) | 1, s->iobase + CODEC_CMI_INT_HLDCLR + 2);
enable_dac(s);
}
spin_unlock_irqrestore(&s->lock, flags);
}
static void start_dac1(struct cm_state *s)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
if ((s->dma_adc.mapped || s->dma_adc.count > 0) && s->dma_adc.ready) {
/* enable interrupt */
outb(inb(s->iobase + CODEC_CMI_INT_HLDCLR + 2) | 2, s->iobase + CODEC_CMI_INT_HLDCLR + 2);
enable_adc(s);
}
spin_unlock_irqrestore(&s->lock, flags);
}
static void start_adc(struct cm_state *s)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
if ((s->dma_adc.mapped || s->dma_adc.count < (signed)(s->dma_adc.dmasize - 2*s->dma_adc.fragsize))
&& s->dma_adc.ready) {
/* enable interrupt */
outb(inb(s->iobase + CODEC_CMI_INT_HLDCLR + 2) | 2, s->iobase + CODEC_CMI_INT_HLDCLR + 2);
enable_adc(s);
}
spin_unlock_irqrestore(&s->lock, flags);
}
/* --------------------------------------------------------------------- */
#define DMABUF_DEFAULTORDER (16-PAGE_SHIFT)
#define DMABUF_MINORDER 1
static void dealloc_dmabuf(struct dmabuf *db)
{
unsigned long map, mapend;
if (db->rawbuf) {
/* undo marking the pages as reserved */
mapend = MAP_NR(db->rawbuf + (PAGE_SIZE << db->buforder) - 1);
for (map = MAP_NR(db->rawbuf); map <= mapend; map++)
clear_bit(PG_reserved, &mem_map[map].flags);
free_pages((unsigned long)db->rawbuf, db->buforder);
}
db->rawbuf = NULL;
db->mapped = db->ready = 0;
}
/* Ch0 is used for playback, Ch1 is used for recording */
static int prog_dmabuf(struct cm_state *s, unsigned rec)
{
struct dmabuf *db = rec ? &s->dma_adc : &s->dma_dac;
unsigned rate = rec ? s->rateadc : s->ratedac;
int order;
unsigned bytepersec;
unsigned bufs;
unsigned long map, mapend;
unsigned char fmt;
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
fmt = s->fmt;
if (rec) {
stop_adc(s);
fmt >>= CM_CFMT_ADCSHIFT;
} else {
stop_dac(s);
fmt >>= CM_CFMT_DACSHIFT;
}
spin_unlock_irqrestore(&s->lock, flags);
fmt &= CM_CFMT_MASK;
db->hwptr = db->swptr = db->total_bytes = db->count = db->error = db->endcleared = 0;
if (!db->rawbuf) {
db->ready = db->mapped = 0;
for (order = DMABUF_DEFAULTORDER; order >= DMABUF_MINORDER; order--)
if ((db->rawbuf = (void *)__get_free_pages(GFP_KERNEL | GFP_DMA, order)))
break;
if (!db->rawbuf)
return -ENOMEM;
db->buforder = order;
db->rawphys = virt_to_bus(db->rawbuf);
if ((db->rawphys ^ (db->rawphys + (PAGE_SIZE << db->buforder) - 1)) & ~0xffff)
printk(KERN_DEBUG "cm: DMA buffer crosses 64k boundary: busaddr 0x%lx size %ld\n",
(long) db->rawphys, PAGE_SIZE << db->buforder);
if ((db->rawphys + (PAGE_SIZE << db->buforder) - 1) & ~0xffffff)
printk(KERN_DEBUG "cm: DMA buffer beyond 16MB: busaddr 0x%lx size %ld\n",
(long) db->rawphys, PAGE_SIZE << db->buforder);
/* now mark the pages as reserved; otherwise remap_page_range doesn't do what we want */
mapend = MAP_NR(db->rawbuf + (PAGE_SIZE << db->buforder) - 1);
for (map = MAP_NR(db->rawbuf); map <= mapend; map++)
set_bit(PG_reserved, &mem_map[map].flags);
}
bytepersec = rate << sample_shift[fmt];
bufs = PAGE_SIZE << db->buforder;
if (db->ossfragshift) {
if ((1000 << db->ossfragshift) < bytepersec)
db->fragshift = ld2(bytepersec/1000);
else
db->fragshift = db->ossfragshift;
} else {
db->fragshift = ld2(bytepersec/100/(db->subdivision ? db->subdivision : 1));
if (db->fragshift < 3)
db->fragshift = 3;
}
db->numfrag = bufs >> db->fragshift;
while (db->numfrag < 4 && db->fragshift > 3) {
db->fragshift--;
db->numfrag = bufs >> db->fragshift;
}
db->fragsize = 1 << db->fragshift;
if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag)
db->numfrag = db->ossmaxfrags;
/* to make fragsize >= 4096 */
if (s->modem)
{
while (db->fragsize < 4096 && db->numfrag >= 4)
{
db->fragsize *= 2;
db->fragshift++;
db->numfrag /= 2;
}
}
db->fragsamples = db->fragsize >> sample_shift[fmt];
db->dmasize = db->numfrag << db->fragshift;
db->dmasamples = db->dmasize >> sample_shift[fmt];
memset(db->rawbuf, (fmt & CM_CFMT_16BIT) ? 0 : 0x80, db->dmasize);
spin_lock_irqsave(&s->lock, flags);
if (rec) {
#ifdef DUAL_DAC
if (s->dual_mode)
set_dmadac1(s, db->rawphys, db->dmasize >> sample_shift[fmt]);
else
#endif
set_dmaadc(s, db->rawphys, db->dmasize >> sample_shift[fmt]);
/* program sample counts */
outw(db->fragsamples-1, s->iobase + CODEC_CMI_CH1_FRAME2 + 2);
} else {
set_dmadac(s, db->rawphys, db->dmasize >> sample_shift[fmt]);
/* program sample counts */
outw(db->fragsamples-1, s->iobase + CODEC_CMI_CH0_FRAME2 + 2);
}
spin_unlock_irqrestore(&s->lock, flags);
db->ready = 1;
return 0;
}
extern __inline__ void clear_advance(struct cm_state *s)
{
unsigned char c = (s->fmt & (CM_CFMT_16BIT << CM_CFMT_DACSHIFT)) ? 0 : 0x80;
unsigned char *buf = s->dma_dac.rawbuf;
#ifdef DUAL_DAC
unsigned char *buf1 = s->dma_adc.rawbuf;
#endif
unsigned bsize = s->dma_dac.dmasize;
unsigned bptr = s->dma_dac.swptr;
unsigned len = s->dma_dac.fragsize;
if (bptr + len > bsize) {
unsigned x = bsize - bptr;
memset(buf + bptr, c, x);
#ifdef DUAL_DAC
if (s->dual_mode)
memset(buf1 + bptr, c, x);
#endif
bptr = 0;
len -= x;
}
memset(buf + bptr, c, len);
#ifdef DUAL_DAC
if (s->dual_mode)
memset(buf1 + bptr, c, len);
#endif
}
/* call with spinlock held! */
static void cm_update_ptr(struct cm_state *s)
{
unsigned hwptr;
int diff;
/* update ADC pointer */
if (s->dma_adc.ready) {
#ifdef DUAL_DAC
if (s->dual_mode)
{
hwptr = get_dmaadc(s) % s->dma_adc.dmasize;
diff = (s->dma_adc.dmasize + hwptr - s->dma_adc.hwptr) % s->dma_adc.dmasize;
s->dma_adc.hwptr = hwptr;
s->dma_adc.total_bytes += diff;
if (s->dma_adc.mapped) {
s->dma_adc.count += diff;
if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
wake_up(&s->dma_adc.wait);
} else {
s->dma_adc.count -= diff;
if (s->dma_adc.count <= 0) {
pause_adc(s);
s->dma_adc.error++;
} else if (s->dma_adc.count <= (signed)s->dma_adc.fragsize && !s->dma_adc.endcleared) {
clear_advance(s);
s->dma_adc.endcleared = 1;
}
if (s->dma_dac.count + (signed)s->dma_dac.fragsize <= (signed)s->dma_dac.dmasize)
wake_up(&s->dma_adc.wait);
}
}
else
{
#endif
hwptr = get_dmaadc(s) % s->dma_adc.dmasize;
diff = (s->dma_adc.dmasize + hwptr - s->dma_adc.hwptr) % s->dma_adc.dmasize;
s->dma_adc.hwptr = hwptr;
s->dma_adc.total_bytes += diff;
s->dma_adc.count += diff;
if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
wake_up(&s->dma_adc.wait);
if (!s->dma_adc.mapped) {
if (s->dma_adc.count > (signed)(s->dma_adc.dmasize - ((3 * s->dma_adc.fragsize) >> 1))) {
pause_adc(s);
s->dma_adc.error++;
}
}
#ifdef DUAL_DAC
}
#endif
}
/* update DAC pointer */
if (s->dma_dac.ready) {
hwptr = get_dmadac(s) % s->dma_dac.dmasize;
diff = (s->dma_dac.dmasize + hwptr - s->dma_dac.hwptr) % s->dma_dac.dmasize;
s->dma_dac.hwptr = hwptr;
s->dma_dac.total_bytes += diff;
if (s->dma_dac.mapped) {
s->dma_dac.count += diff;
if (s->dma_dac.count >= (signed)s->dma_dac.fragsize)
wake_up(&s->dma_dac.wait);
} else {
s->dma_dac.count -= diff;
if (s->dma_dac.count <= 0) {
pause_dac(s);
s->dma_dac.error++;
} else if (s->dma_dac.count <= (signed)s->dma_dac.fragsize && !s->dma_dac.endcleared) {
clear_advance(s);
s->dma_dac.endcleared = 1;
}
if (s->dma_dac.count + (signed)s->dma_dac.fragsize <= (signed)s->dma_dac.dmasize)
wake_up(&s->dma_dac.wait);
}
}
}
#ifdef CONFIG_SOUND_CMPCI_MIDI
/* hold spinlock for the following! */
static void cm_handle_midi(struct cm_state *s)
{
unsigned char ch;
int wake;
wake = 0;
while (!(inb(s->iomidi+1) & 0x80)) {
ch = inb(s->iomidi);
if (s->midi.icnt < MIDIINBUF) {
s->midi.ibuf[s->midi.iwr] = ch;
s->midi.iwr = (s->midi.iwr + 1) % MIDIINBUF;
s->midi.icnt++;
}
wake = 1;
}
if (wake)
wake_up(&s->midi.iwait);
wake = 0;
while (!(inb(s->iomidi+1) & 0x40) && s->midi.ocnt > 0) {
outb(s->midi.obuf[s->midi.ord], s->iomidi);
s->midi.ord = (s->midi.ord + 1) % MIDIOUTBUF;
s->midi.ocnt--;
if (s->midi.ocnt < MIDIOUTBUF-16)
wake = 1;
}
if (wake)
wake_up(&s->midi.owait);
}
#endif
static void cm_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct cm_state *s = (struct cm_state *)dev_id;
unsigned int intsrc, intstat;
unsigned char mask = 0;
/* fastpath out, to ease interrupt sharing */
intsrc = inl(s->iobase + CODEC_CMI_INT_STATUS);
if (!(intsrc & 0x80000000))
return;
spin_lock(&s->lock);
intstat = inb(s->iobase + CODEC_CMI_INT_HLDCLR + 2);
/* acknowledge interrupt */
if (intsrc & CM_INT_CH0)
mask |= 1;
if (intsrc & CM_INT_CH1)
mask |= 2;
outb(intstat & ~mask, s->iobase + CODEC_CMI_INT_HLDCLR + 2);
outb(intstat | mask, s->iobase + CODEC_CMI_INT_HLDCLR + 2);
cm_update_ptr(s);
#ifdef CONFIG_SOUND_CMPCI_MIDI
cm_handle_midi(s);
#endif
spin_unlock(&s->lock);
}
#ifdef CONFIG_SOUND_CMPCI_MIDI
static void cm_midi_timer(unsigned long data)
{
struct cm_state *s = (struct cm_state *)data;
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
cm_handle_midi(s);
spin_unlock_irqrestore(&s->lock, flags);
s->midi.timer.expires = jiffies+1;
add_timer(&s->midi.timer);
}
#endif
/* --------------------------------------------------------------------- */
static const char invalid_magic[] = KERN_CRIT "cm: invalid magic value\n";
#ifdef CONFIG_SOUND_CMPCI /* support multiple chips */
#define VALIDATE_STATE(s)
#else
#define VALIDATE_STATE(s) \
({ \
if (!(s) || (s)->magic != CM_MAGIC) { \
printk(invalid_magic); \
return -ENXIO; \
} \
})
#endif
/* --------------------------------------------------------------------- */
#define MT_4 1
#define MT_5MUTE 2
#define MT_4MUTEMONO 3
#define MT_6MUTE 4
#define MT_5MUTEMONO 5
static const struct {
unsigned left;
unsigned right;
unsigned type;
unsigned rec;
unsigned play;
} mixtable[SOUND_MIXER_NRDEVICES] = {
[SOUND_MIXER_CD] = { DSP_MIX_CDVOLIDX_L, DSP_MIX_CDVOLIDX_R, MT_5MUTE, 0x04, 0x02 },
[SOUND_MIXER_LINE] = { DSP_MIX_LINEVOLIDX_L, DSP_MIX_LINEVOLIDX_R, MT_5MUTE, 0x10, 0x08 },
[SOUND_MIXER_MIC] = { DSP_MIX_MICVOLIDX, DSP_MIX_MICVOLIDX, MT_5MUTEMONO, 0x01, 0x01 },
[SOUND_MIXER_SYNTH] = { DSP_MIX_FMVOLIDX_L, DSP_MIX_FMVOLIDX_R, MT_5MUTE, 0x40, 0x00 },
[SOUND_MIXER_VOLUME] = { DSP_MIX_MASTERVOLIDX_L, DSP_MIX_MASTERVOLIDX_R, MT_5MUTE, 0x00, 0x00 },
[SOUND_MIXER_PCM] = { DSP_MIX_VOICEVOLIDX_L, DSP_MIX_VOICEVOLIDX_R, MT_5MUTE, 0x00, 0x00 }
};
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
static int return_mixval(struct cm_state *s, unsigned i, int *arg)
{
unsigned long flags;
unsigned char l, r, rl, rr;
spin_lock_irqsave(&s->lock, flags);
l = rdmixer(s, mixtable[i].left);
r = rdmixer(s, mixtable[i].right);
spin_unlock_irqrestore(&s->lock, flags);
switch (mixtable[i].type) {
case MT_4:
r &= 0xf;
l &= 0xf;
rl = 10 + 6 * (l & 15);
rr = 10 + 6 * (r & 15);
break;
case MT_4MUTEMONO:
rl = 55 - 3 * (l & 15);
if (r & 0x10)
rl += 45;
rr = rl;
r = l;
break;
case MT_5MUTEMONO:
r = l;
rl = 100 - 3 * ((l >> 3) & 31);
rr = rl;
break;
case MT_5MUTE:
default:
rl = 100 - 3 * ((l >> 3) & 31);
rr = 100 - 3 * ((r >> 3) & 31);
break;
case MT_6MUTE:
rl = 100 - 3 * (l & 63) / 2;
rr = 100 - 3 * (r & 63) / 2;
break;
}
if (l & 0x80)
rl = 0;
if (r & 0x80)
rr = 0;
return put_user((rr << 8) | rl, arg);
}
#else /* OSS_DOCUMENTED_MIXER_SEMANTICS */
static const unsigned char volidx[SOUND_MIXER_NRDEVICES] =
{
[SOUND_MIXER_CD] = 1,
[SOUND_MIXER_LINE] = 2,
[SOUND_MIXER_MIC] = 3,
[SOUND_MIXER_SYNTH] = 4,
[SOUND_MIXER_VOLUME] = 5,
[SOUND_MIXER_PCM] = 6
};
#endif /* OSS_DOCUMENTED_MIXER_SEMANTICS */
static unsigned mixer_recmask(struct cm_state *s)
{
unsigned long flags;
int i, j, k;
spin_lock_irqsave(&s->lock, flags);
j = rdmixer(s, DSP_MIX_ADCMIXIDX_L);
spin_unlock_irqrestore(&s->lock, flags);
j &= 0x7f;
for (k = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
if (j & mixtable[i].rec)
k |= 1 << i;
return k;
}
static int mixer_ioctl(struct cm_state *s, unsigned int cmd, unsigned long arg)
{
unsigned long flags;
int i, val, j;
unsigned char l, r, rl, rr;
VALIDATE_STATE(s);
if (cmd == SOUND_MIXER_INFO) {
mixer_info info;
strncpy(info.id, "cmpci", sizeof(info.id));
strncpy(info.name, "C-Media PCI", sizeof(info.name));
info.modify_counter = s->mix.modcnt;
if (copy_to_user((void *)arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == SOUND_OLD_MIXER_INFO) {
_old_mixer_info info;
strncpy(info.id, "cmpci", sizeof(info.id));
strncpy(info.name, "C-Media cmpci", sizeof(info.name));
if (copy_to_user((void *)arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == OSS_GETVERSION)
return put_user(SOUND_VERSION, (int *)arg);
if (_IOC_TYPE(cmd) != 'M' || _IOC_SIZE(cmd) != sizeof(int))
return -EINVAL;
if (_IOC_DIR(cmd) == _IOC_READ) {
switch (_IOC_NR(cmd)) {
case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
return put_user(mixer_recmask(s), (int *)arg);
case SOUND_MIXER_OUTSRC: /* Arg contains a bit for each recording source */
return put_user(mixer_recmask(s), (int *)arg);//need fix
case SOUND_MIXER_DEVMASK: /* Arg contains a bit for each supported device */
for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
if (mixtable[i].type)
val |= 1 << i;
return put_user(val, (int *)arg);
case SOUND_MIXER_RECMASK: /* Arg contains a bit for each supported recording source */
for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
if (mixtable[i].rec)
val |= 1 << i;
return put_user(val, (int *)arg);
case SOUND_MIXER_OUTMASK: /* Arg contains a bit for each supported recording source */
for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
if (mixtable[i].play)
val |= 1 << i;
return put_user(val, (int *)arg);
case SOUND_MIXER_STEREODEVS: /* Mixer channels supporting stereo */
for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
if (mixtable[i].type && mixtable[i].type != MT_4MUTEMONO)
val |= 1 << i;
return put_user(val, (int *)arg);
case SOUND_MIXER_CAPS:
return put_user(0, (int *)arg);
default:
i = _IOC_NR(cmd);
if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].type)
return -EINVAL;
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
return return_mixval(s, i, (int *)arg);
#else /* OSS_DOCUMENTED_MIXER_SEMANTICS */
if (!volidx[i])
return -EINVAL;
return put_user(s->mix.vol[volidx[i]-1], (int *)arg);
#endif /* OSS_DOCUMENTED_MIXER_SEMANTICS */
}
}
if (_IOC_DIR(cmd) != (_IOC_READ|_IOC_WRITE))
return -EINVAL;
s->mix.modcnt++;
switch (_IOC_NR(cmd)) {
case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
get_user_ret(val, (int *)arg, -EFAULT);
i = hweight32(val);
for (j = i = 0; i < SOUND_MIXER_NRDEVICES; i++) {
if (!(val & (1 << i)))
continue;
if (!mixtable[i].rec) {
val &= ~(1 << i);
continue;
}
j |= mixtable[i].rec;
}
spin_lock_irqsave(&s->lock, flags);
wrmixer(s, DSP_MIX_ADCMIXIDX_L, j);
wrmixer(s, DSP_MIX_ADCMIXIDX_R, (j & 1) | (j>>1));
spin_unlock_irqrestore(&s->lock, flags);
return 0;
case SOUND_MIXER_OUTSRC: /* Arg contains a bit for each recording source */
get_user_ret(val, (int *)arg, -EFAULT);
for (j = i = 0; i < SOUND_MIXER_NRDEVICES; i++) {
if (!(val & (1 << i)))
continue;
if (!mixtable[i].play) {
val &= ~(1 << i);
continue;
}
j |= mixtable[i].play;
}
spin_lock_irqsave(&s->lock, flags);
frobindir(s, DSP_MIX_OUTMIXIDX, 0x1f, j);
spin_unlock_irqrestore(&s->lock, flags);
return 0;
default:
i = _IOC_NR(cmd);
if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].type)
return -EINVAL;
get_user_ret(val, (int *)arg, -EFAULT);
l = val & 0xff;
r = (val >> 8) & 0xff;
if (l > 100)
l = 100;
if (r > 100)
r = 100;
spin_lock_irqsave(&s->lock, flags);
switch (mixtable[i].type) {
case MT_4:
if (l >= 10)
l -= 10;
if (r >= 10)
r -= 10;
frobindir(s, mixtable[i].left, 0xf0, l / 6);
frobindir(s, mixtable[i].right, 0xf0, l / 6);
break;
case MT_4MUTEMONO:
rl = (l < 4 ? 0 : (l - 5) / 3) & 31;
rr = (rl >> 2) & 7;
wrmixer(s, mixtable[i].left, rl<<3);
outb((inb(s->iobase + CODEC_CMI_MIXER2) & ~0x0e) | rr<<1, s->iobase + CODEC_CMI_MIXER2);
break;
case MT_5MUTEMONO:
r = l;
rl = l < 4 ? 0 : (l - 5) / 3;
rr = rl >> 2;
wrmixer(s, mixtable[i].left, rl<<3);
outb((inb(s->iobase + CODEC_CMI_MIXER2) & ~0x0e) | rr<<1, s->iobase + CODEC_CMI_MIXER2);
break;
case MT_5MUTE:
rl = l < 4 ? 0 : (l - 5) / 3;
rr = r < 4 ? 0 : (r - 5) / 3;
wrmixer(s, mixtable[i].left, rl<<3);
wrmixer(s, mixtable[i].right, rr<<3);
break;
case MT_6MUTE:
if (l < 6)
rl = 0x00;
else
rl = l * 2 / 3;
if (r < 6)
rr = 0x00;
else
rr = r * 2 / 3;
wrmixer(s, mixtable[i].left, rl);
wrmixer(s, mixtable[i].right, rr);
break;
}
spin_unlock_irqrestore(&s->lock, flags);
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
return return_mixval(s, i, (int *)arg);
#else /* OSS_DOCUMENTED_MIXER_SEMANTICS */
if (!volidx[i])
return -EINVAL;
s->mix.vol[volidx[i]-1] = val;
return put_user(s->mix.vol[volidx[i]-1], (int *)arg);
#endif /* OSS_DOCUMENTED_MIXER_SEMANTICS */
}
}
/* --------------------------------------------------------------------- */
static loff_t cm_llseek(struct file *file, loff_t offset, int origin)
{
return -ESPIPE;
}
/* --------------------------------------------------------------------- */
static int cm_open_mixdev(struct inode *inode, struct file *file)
{
int minor = MINOR(inode->i_rdev);
struct cm_state *s = devs;
while (s && s->dev_mixer != minor)
s = s->next;
if (!s)
return -ENODEV;
VALIDATE_STATE(s);
file->private_data = s;
MOD_INC_USE_COUNT;
return 0;
}
static int cm_release_mixdev(struct inode *inode, struct file *file)
{
struct cm_state *s = (struct cm_state *)file->private_data;
VALIDATE_STATE(s);
MOD_DEC_USE_COUNT;
return 0;
}
static int cm_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
return mixer_ioctl((struct cm_state *)file->private_data, cmd, arg);
}
static /*const*/ struct file_operations cm_mixer_fops = {
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
llseek: cm_llseek,
ioctl: cm_ioctl_mixdev,
open: cm_open_mixdev,
release: cm_release_mixdev,
#else
&cm_llseek,
NULL, /* read */
NULL, /* write */
NULL, /* readdir */
NULL, /* poll */
&cm_ioctl_mixdev,
NULL, /* mmap */
&cm_open_mixdev,
NULL, /* flush */
&cm_release_mixdev,
NULL, /* fsync */
NULL, /* fasync */
NULL, /* check_media_change */
NULL, /* revalidate */
NULL, /* lock */
#endif
};
int IntrOpen(void)
{
struct cm_state *s = devs;
unsigned char fmtm = ~0, fmts = 0;
/* Locate the /dev/dsp file descriptor */
while (s && ((s->dev_audio ^ 3) & ~0xf))
s = s->next;
devaudio = s;
down(&s->open_sem);
if (s->open_mode & FMODE_WRITE)
{
up(&s->open_sem);
devaudio = NULL;
return -EBUSY;
}
if (!s->dma_dac.ready)
{
set_dac_rate(s, 8000);
fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_DACSHIFT);
set_fmt(s, fmtm, fmts);
s->modem = 1;
}
s->open_mode |= FMODE_WRITE;
up(&s->open_sem);
MOD_INC_USE_COUNT;
return 0;
}
EXPORT_SYMBOL(IntrOpen);
int IntrClose(void)
{
struct cm_state *s = devaudio;
if (!s)
return -ENODEV;
down(&s->open_sem);
stop_dac(s);
#ifndef FIXEDDMA
dealloc_dmabuf(&s->dma_dac);
#endif
s->open_mode &= ~FMODE_WRITE;
s->modem = 0;
up(&s->open_sem);
wake_up(&s->open_wait);
MOD_DEC_USE_COUNT;
devaudio = NULL;
return 0;
}
EXPORT_SYMBOL(IntrClose);
int IntrWrite(const char *buffer, int count)
{
struct cm_state *s = devaudio;
ssize_t ret = 0;
unsigned long flags;
unsigned swptr;
int cnt;
if (!s)
return -ENODEV;
VALIDATE_STATE(s);
if (s->dma_dac.mapped)
return -ENXIO;
if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0)))
return ret;
s->dma_dac.ossfragshift = 8;
s->dma_dac.ossmaxfrags = 16;
s->dma_dac.subdivision = 0;
while (count > 0) {
spin_lock_irqsave(&s->lock, flags);
if (s->dma_dac.count < 0) {
s->dma_dac.count = 0;
s->dma_dac.swptr = s->dma_dac.hwptr;
}
swptr = s->dma_dac.swptr;
cnt = s->dma_dac.dmasize-swptr;
if (s->dma_dac.count + cnt > s->dma_dac.dmasize)
cnt = s->dma_dac.dmasize - s->dma_dac.count;
spin_unlock_irqrestore(&s->lock, flags);
if (cnt > count)
cnt = count;
if (cnt <= 0) {
start_dac(s);
return ret;
}
if (__copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt))
return ret ? ret : -EFAULT;
swptr = (swptr + cnt) % s->dma_dac.dmasize;
spin_lock_irqsave(&s->lock, flags);
s->dma_dac.swptr = swptr;
s->dma_dac.count += cnt;
s->dma_dac.endcleared = 0;
spin_unlock_irqrestore(&s->lock, flags);
count -= cnt;
buffer += cnt;
ret += cnt;
start_dac(s);
}
return ret;
}
EXPORT_SYMBOL(IntrWrite);
/* --------------------------------------------------------------------- */
static int drain_dac(struct cm_state *s, int nonblock)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
DECLARE_WAITQUEUE(wait, current);
#else
struct wait_queue wait = { current, NULL };
#endif
unsigned long flags;
int count, tmo;
if (s->dma_dac.mapped || !s->dma_dac.ready)
return 0;
current->state = TASK_INTERRUPTIBLE;
add_wait_queue(&s->dma_dac.wait, &wait);
for (;;) {
spin_lock_irqsave(&s->lock, flags);
count = s->dma_dac.count;
spin_unlock_irqrestore(&s->lock, flags);
if (count <= 0)
break;
if (signal_pending(current))
break;
if (nonblock) {
remove_wait_queue(&s->dma_dac.wait, &wait);
current->state = TASK_RUNNING;
return -EBUSY;
}
tmo = (count * HZ) / s->ratedac;
tmo >>= sample_shift[(s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK];
if (!schedule_timeout(tmo ? : 1) && tmo)
printk(KERN_DEBUG "cm: dma timed out??\n");
}
remove_wait_queue(&s->dma_dac.wait, &wait);
current->state = TASK_RUNNING;
if (signal_pending(current))
return -ERESTARTSYS;
return 0;
}
/* --------------------------------------------------------------------- */
static ssize_t cm_read(struct file *file, char *buffer, size_t count, loff_t *ppos)
{
struct cm_state *s = (struct cm_state *)file->private_data;
ssize_t ret;
unsigned long flags;
unsigned swptr;
int cnt;
VALIDATE_STATE(s);
if (ppos != &file->f_pos)
return -ESPIPE;
if (s->dma_adc.mapped)
return -ENXIO;
if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
return ret;
if (!access_ok(VERIFY_WRITE, buffer, count))
return -EFAULT;
ret = 0;
#if 0
spin_lock_irqsave(&s->lock, flags);
cm_update_ptr(s);
spin_unlock_irqrestore(&s->lock, flags);
#endif
while (count > 0) {
spin_lock_irqsave(&s->lock, flags);
swptr = s->dma_adc.swptr;
cnt = s->dma_adc.dmasize-swptr;
if (s->dma_adc.count < cnt)
cnt = s->dma_adc.count;
spin_unlock_irqrestore(&s->lock, flags);
if (cnt > count)
cnt = count;
if (cnt <= 0) {
start_adc(s);
if (file->f_flags & O_NONBLOCK)
return ret ? ret : -EAGAIN;
if (!interruptible_sleep_on_timeout(&s->dma_adc.wait, HZ)) {
printk(KERN_DEBUG "cm: read: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n",
s->dma_adc.dmasize, s->dma_adc.fragsize, s->dma_adc.count,
s->dma_adc.hwptr, s->dma_adc.swptr);
stop_adc(s);
spin_lock_irqsave(&s->lock, flags);
set_dmaadc(s, s->dma_adc.rawphys, s->dma_adc.dmasamples);
/* program sample counts */
outw(s->dma_adc.fragsamples-1, s->iobase + CODEC_CMI_CH1_FRAME2 + 2);
s->dma_adc.count = s->dma_adc.hwptr = s->dma_adc.swptr = 0;
spin_unlock_irqrestore(&s->lock, flags);
}
if (signal_pending(current))
return ret ? ret : -ERESTARTSYS;
continue;
}
if (copy_to_user(buffer, s->dma_adc.rawbuf + swptr, cnt))
return ret ? ret : -EFAULT;
swptr = (swptr + cnt) % s->dma_adc.dmasize;
spin_lock_irqsave(&s->lock, flags);
s->dma_adc.swptr = swptr;
s->dma_adc.count -= cnt;
spin_unlock_irqrestore(&s->lock, flags);
count -= cnt;
buffer += cnt;
ret += cnt;
start_adc(s);
}
return ret;
}
static ssize_t cm_write(struct file *file, const char *buffer, size_t count, loff_t *ppos)
{
struct cm_state *s = (struct cm_state *)file->private_data;
ssize_t ret;
unsigned long flags;
unsigned swptr;
int cnt;
VALIDATE_STATE(s);
if (ppos != &file->f_pos)
return -ESPIPE;
if (s->dma_dac.mapped)
return -ENXIO;
if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0)))
return ret;
if (!access_ok(VERIFY_READ, buffer, count))
return -EFAULT;
ret = 0;
#if 0
spin_lock_irqsave(&s->lock, flags);
cm_update_ptr(s);
spin_unlock_irqrestore(&s->lock, flags);
#endif
while (count > 0) {
spin_lock_irqsave(&s->lock, flags);
if (s->dma_dac.count < 0) {
s->dma_dac.count = 0;
s->dma_dac.swptr = s->dma_dac.hwptr;
}
swptr = s->dma_dac.swptr;
cnt = s->dma_dac.dmasize-swptr;
if (s->dma_dac.count + cnt > s->dma_dac.dmasize)
cnt = s->dma_dac.dmasize - s->dma_dac.count;
spin_unlock_irqrestore(&s->lock, flags);
if (cnt > count)
cnt = count;
if (cnt <= 0) {
start_dac(s);
if (file->f_flags & O_NONBLOCK)
return ret ? ret : -EAGAIN;
if (!interruptible_sleep_on_timeout(&s->dma_dac.wait, HZ)) {
printk(KERN_DEBUG "cm: write: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n",
s->dma_dac.dmasize, s->dma_dac.fragsize, s->dma_dac.count,
s->dma_dac.hwptr, s->dma_dac.swptr);
stop_dac(s);
spin_lock_irqsave(&s->lock, flags);
set_dmadac(s, s->dma_dac.rawphys, s->dma_dac.dmasamples);
/* program sample counts */
outw(s->dma_dac.fragsamples-1, s->iobase + CODEC_CMI_CH0_FRAME2 + 2);
s->dma_dac.count = s->dma_dac.hwptr = s->dma_dac.swptr = 0;
spin_unlock_irqrestore(&s->lock, flags);
}
if (signal_pending(current))
return ret ? ret : -ERESTARTSYS;
continue;
}
if (copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt))
return ret ? ret : -EFAULT;
swptr = (swptr + cnt) % s->dma_dac.dmasize;
spin_lock_irqsave(&s->lock, flags);
s->dma_dac.swptr = swptr;
s->dma_dac.count += cnt;
s->dma_dac.endcleared = 0;
spin_unlock_irqrestore(&s->lock, flags);
count -= cnt;
buffer += cnt;
ret += cnt;
start_dac(s);
}
return ret;
}
static unsigned int cm_poll(struct file *file, struct poll_table_struct *wait)
{
struct cm_state *s = (struct cm_state *)file->private_data;
unsigned long flags;
unsigned int mask = 0;
VALIDATE_STATE(s);
if (file->f_mode & FMODE_WRITE)
poll_wait(file, &s->dma_dac.wait, wait);
if (file->f_mode & FMODE_READ)
poll_wait(file, &s->dma_adc.wait, wait);
spin_lock_irqsave(&s->lock, flags);
cm_update_ptr(s);
if (file->f_mode & FMODE_READ) {
if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
mask |= POLLIN | POLLRDNORM;
}
if (file->f_mode & FMODE_WRITE) {
if (s->dma_dac.mapped) {
if (s->dma_dac.count >= (signed)s->dma_dac.fragsize)
mask |= POLLOUT | POLLWRNORM;
} else {
if ((signed)s->dma_dac.dmasize >= s->dma_dac.count + (signed)s->dma_dac.fragsize)
mask |= POLLOUT | POLLWRNORM;
}
}
spin_unlock_irqrestore(&s->lock, flags);
return mask;
}
static int cm_mmap(struct file *file, struct vm_area_struct *vma)
{
struct cm_state *s = (struct cm_state *)file->private_data;
struct dmabuf *db;
int ret;
unsigned long size;
VALIDATE_STATE(s);
if (vma->vm_flags & VM_WRITE) {
if ((ret = prog_dmabuf(s, 1)) != 0)
return ret;
db = &s->dma_dac;
} else if (vma->vm_flags & VM_READ) {
if ((ret = prog_dmabuf(s, 0)) != 0)
return ret;
db = &s->dma_adc;
} else
return -EINVAL;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
if (vma->vm_pgoff != 0)
#else
if (vma->vm_offset != 0)
#endif
return -EINVAL;
size = vma->vm_end - vma->vm_start;
if (size > (PAGE_SIZE << db->buforder))
return -EINVAL;
if (remap_page_range(vma->vm_start, virt_to_phys(db->rawbuf), size, vma->vm_page_prot))
return -EAGAIN;
db->mapped = 1;
return 0;
}
static int cm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
struct cm_state *s = (struct cm_state *)file->private_data;
unsigned long flags;
audio_buf_info abinfo;
count_info cinfo;
int val, mapped, ret;
unsigned char fmtm, fmtd;
VALIDATE_STATE(s);
mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) ||
((file->f_mode & FMODE_READ) && s->dma_adc.mapped);
switch (cmd) {
case OSS_GETVERSION:
return put_user(SOUND_VERSION, (int *)arg);
case SNDCTL_DSP_SYNC:
if (file->f_mode & FMODE_WRITE)
return drain_dac(s, 0/*file->f_flags & O_NONBLOCK*/);
return 0;
case SNDCTL_DSP_SETDUPLEX:
return 0;
case SNDCTL_DSP_GETCAPS:
return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER | DSP_CAP_MMAP, (int *)arg);
case SNDCTL_DSP_RESET:
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
synchronize_irq();
s->dma_dac.swptr = s->dma_dac.hwptr = s->dma_dac.count = s->dma_dac.total_bytes = 0;
}
if (file->f_mode & FMODE_READ) {
stop_adc(s);
synchronize_irq();
s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0;
}
return 0;
case SNDCTL_DSP_SPEED:
get_user_ret(val, (int *)arg, -EFAULT);
if (val >= 0) {
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.ready = 0;
set_adc_rate(s, val);
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.ready = 0;
set_dac_rate(s, val);
}
}
return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, (int *)arg);
case SNDCTL_DSP_STEREO:
get_user_ret(val, (int *)arg, -EFAULT);
fmtd = 0;
fmtm = ~0;
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.ready = 0;
if (val)
fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
else
fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.ready = 0;
if (val)
fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT;
else
fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_DACSHIFT);
}
set_fmt(s, fmtm, fmtd);
return 0;
case SNDCTL_DSP_CHANNELS:
get_user_ret(val, (int *)arg, -EFAULT);
if (val != 0) {
fmtd = 0;
fmtm = ~0;
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.ready = 0;
if (val >= 2)
fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
else
fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.ready = 0;
if (val >= 2)
fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT;
else
fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_DACSHIFT);
}
set_fmt(s, fmtm, fmtd);
}
return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_STEREO << CM_CFMT_ADCSHIFT)
: (CM_CFMT_STEREO << CM_CFMT_DACSHIFT))) ? 2 : 1, (int *)arg);
case SNDCTL_DSP_GETFMTS: /* Returns a mask */
return put_user(AFMT_S16_LE|AFMT_U8, (int *)arg);
case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/
get_user_ret(val, (int *)arg, -EFAULT);
if (val != AFMT_QUERY) {
fmtd = 0;
fmtm = ~0;
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.ready = 0;
if (val == AFMT_S16_LE)
fmtd |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT;
else
fmtm &= ~(CM_CFMT_16BIT << CM_CFMT_ADCSHIFT);
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.ready = 0;
if (val == AFMT_S16_LE)
fmtd |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT;
else
fmtm &= ~(CM_CFMT_16BIT << CM_CFMT_DACSHIFT);
}
set_fmt(s, fmtm, fmtd);
}
return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_16BIT << CM_CFMT_ADCSHIFT)
: (CM_CFMT_16BIT << CM_CFMT_DACSHIFT))) ? AFMT_S16_LE : AFMT_U8, (int *)arg);
case SNDCTL_DSP_POST:
return 0;
case SNDCTL_DSP_GETTRIGGER:
val = 0;
if (file->f_mode & FMODE_READ && s->enable & CM_CENABLE_RE)
val |= PCM_ENABLE_INPUT;
if (file->f_mode & FMODE_WRITE && s->enable & CM_CENABLE_PE)
val |= PCM_ENABLE_OUTPUT;
return put_user(val, (int *)arg);
case SNDCTL_DSP_SETTRIGGER:
get_user_ret(val, (int *)arg, -EFAULT);
if (file->f_mode & FMODE_READ) {
if (val & PCM_ENABLE_INPUT) {
if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
return ret;
start_adc(s);
} else
stop_adc(s);
}
if (file->f_mode & FMODE_WRITE) {
if (val & PCM_ENABLE_OUTPUT) {
if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0)))
return ret;
start_dac(s);
} else
stop_dac(s);
}
return 0;
case SNDCTL_DSP_GETOSPACE:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
if (!(s->enable & CM_CENABLE_PE) && (val = prog_dmabuf(s, 0)) != 0)
return val;
spin_lock_irqsave(&s->lock, flags);
cm_update_ptr(s);
abinfo.fragsize = s->dma_dac.fragsize;
abinfo.bytes = s->dma_dac.dmasize - s->dma_dac.count;
abinfo.fragstotal = s->dma_dac.numfrag;
abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift;
spin_unlock_irqrestore(&s->lock, flags);
return copy_to_user((void *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_GETISPACE:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
if (!(s->enable & CM_CENABLE_RE) && (val = prog_dmabuf(s, 1)) != 0)
return val;
spin_lock_irqsave(&s->lock, flags);
cm_update_ptr(s);
abinfo.fragsize = s->dma_adc.fragsize;
abinfo.bytes = s->dma_adc.count;
abinfo.fragstotal = s->dma_adc.numfrag;
abinfo.fragments = abinfo.bytes >> s->dma_adc.fragshift;
spin_unlock_irqrestore(&s->lock, flags);
return copy_to_user((void *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_NONBLOCK:
file->f_flags |= O_NONBLOCK;
return 0;
case SNDCTL_DSP_GETODELAY:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
spin_lock_irqsave(&s->lock, flags);
cm_update_ptr(s);
val = s->dma_dac.count;
spin_unlock_irqrestore(&s->lock, flags);
return put_user(val, (int *)arg);
case SNDCTL_DSP_GETIPTR:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
spin_lock_irqsave(&s->lock, flags);
cm_update_ptr(s);
cinfo.bytes = s->dma_adc.total_bytes;
cinfo.blocks = s->dma_adc.count >> s->dma_adc.fragshift;
cinfo.ptr = s->dma_adc.hwptr;
if (s->dma_adc.mapped)
s->dma_adc.count &= s->dma_adc.fragsize-1;
spin_unlock_irqrestore(&s->lock, flags);
return copy_to_user((void *)arg, &cinfo, sizeof(cinfo));
case SNDCTL_DSP_GETOPTR:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
spin_lock_irqsave(&s->lock, flags);
cm_update_ptr(s);
cinfo.bytes = s->dma_dac.total_bytes;
cinfo.blocks = s->dma_dac.count >> s->dma_dac.fragshift;
cinfo.ptr = s->dma_dac.hwptr;
if (s->dma_dac.mapped)
s->dma_dac.count &= s->dma_dac.fragsize-1;
spin_unlock_irqrestore(&s->lock, flags);
return copy_to_user((void *)arg, &cinfo, sizeof(cinfo));
case SNDCTL_DSP_GETBLKSIZE:
if (file->f_mode & FMODE_WRITE) {
if ((val = prog_dmabuf(s, 0)))
return val;
return put_user(s->dma_dac.fragsize, (int *)arg);
}
if ((val = prog_dmabuf(s, 1)))
return val;
return put_user(s->dma_adc.fragsize, (int *)arg);
case SNDCTL_DSP_SETFRAGMENT:
get_user_ret(val, (int *)arg, -EFAULT);
if (file->f_mode & FMODE_READ) {
s->dma_adc.ossfragshift = val & 0xffff;
s->dma_adc.ossmaxfrags = (val >> 16) & 0xffff;
if (s->dma_adc.ossfragshift < 4)
s->dma_adc.ossfragshift = 4;
if (s->dma_adc.ossfragshift > 15)
s->dma_adc.ossfragshift = 15;
if (s->dma_adc.ossmaxfrags < 4)
s->dma_adc.ossmaxfrags = 4;
}
if (file->f_mode & FMODE_WRITE) {
s->dma_dac.ossfragshift = val & 0xffff;
s->dma_dac.ossmaxfrags = (val >> 16) & 0xffff;
if (s->dma_dac.ossfragshift < 4)
s->dma_dac.ossfragshift = 4;
if (s->dma_dac.ossfragshift > 15)
s->dma_dac.ossfragshift = 15;
if (s->dma_dac.ossmaxfrags < 4)
s->dma_dac.ossmaxfrags = 4;
}
return 0;
case SNDCTL_DSP_SUBDIVIDE:
if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision) ||
(file->f_mode & FMODE_WRITE && s->dma_dac.subdivision))
return -EINVAL;
get_user_ret(val, (int *)arg, -EFAULT);
if (val != 1 && val != 2 && val != 4)
return -EINVAL;
if (file->f_mode & FMODE_READ)
s->dma_adc.subdivision = val;
if (file->f_mode & FMODE_WRITE)
s->dma_dac.subdivision = val;
return 0;
case SOUND_PCM_READ_RATE:
return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, (int *)arg);
case SOUND_PCM_READ_CHANNELS:
return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_STEREO << CM_CFMT_ADCSHIFT) : (CM_CFMT_STEREO << CM_CFMT_DACSHIFT))) ? 2 : 1, (int *)arg);
case SOUND_PCM_READ_BITS:
return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_16BIT << CM_CFMT_ADCSHIFT) : (CM_CFMT_16BIT << CM_CFMT_DACSHIFT))) ? 16 : 8, (int *)arg);
case SOUND_PCM_READ_FILTER:
return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, (int *)arg);
case SOUND_PCM_WRITE_FILTER:
case SNDCTL_DSP_SETSYNCRO:
return -EINVAL;
}
return mixer_ioctl(s, cmd, arg);
}
static int cm_open(struct inode *inode, struct file *file)
{
int minor = MINOR(inode->i_rdev);
struct cm_state *s = devs;
unsigned char fmtm = ~0, fmts = 0;
while (s && ((s->dev_audio ^ minor) & ~0xf))
s = s->next;
if (!s)
return -ENODEV;
VALIDATE_STATE(s);
file->private_data = s;
/* wait for device to become free */
down(&s->open_sem);
while (s->open_mode & file->f_mode) {
if (file->f_flags & O_NONBLOCK) {
up(&s->open_sem);
return -EBUSY;
}
up(&s->open_sem);
interruptible_sleep_on(&s->open_wait);
if (signal_pending(current))
return -ERESTARTSYS;
down(&s->open_sem);
}
if (file->f_mode & FMODE_READ) {
fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_ADCSHIFT);
if ((minor & 0xf) == SND_DEV_DSP16)
fmts |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT;
s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags = s->dma_adc.subdivision = 0;
set_adc_rate(s, 8000);
}
if (file->f_mode & FMODE_WRITE) {
fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_DACSHIFT);
if ((minor & 0xf) == SND_DEV_DSP16)
fmts |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT;
s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags = s->dma_dac.subdivision = 0;
set_dac_rate(s, 8000);
}
set_fmt(s, fmtm, fmts);
s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
up(&s->open_sem);
MOD_INC_USE_COUNT;
return 0;
}
static int cm_release(struct inode *inode, struct file *file)
{
struct cm_state *s = (struct cm_state *)file->private_data;
VALIDATE_STATE(s);
if (file->f_mode & FMODE_WRITE)
drain_dac(s, file->f_flags & O_NONBLOCK);
down(&s->open_sem);
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
#ifndef FIXEDDMA
dealloc_dmabuf(&s->dma_dac);
#endif
}
if (file->f_mode & FMODE_READ) {
stop_adc(s);
#ifndef FIXEDDMA
dealloc_dmabuf(&s->dma_adc);
#endif
}
s->open_mode &= (~file->f_mode) & (FMODE_READ|FMODE_WRITE);
up(&s->open_sem);
wake_up(&s->open_wait);
MOD_DEC_USE_COUNT;
return 0;
}
static /*const*/ struct file_operations cm_audio_fops = {
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
llseek: cm_llseek,
read: cm_read,
write: cm_write,
poll: cm_poll,
ioctl: cm_ioctl,
mmap: cm_mmap,
open: cm_open,
release: cm_release,
#else
&cm_llseek,
&cm_read,
&cm_write,
NULL, /* readdir */
&cm_poll,
&cm_ioctl,
&cm_mmap,
&cm_open,
NULL, /* flush */
&cm_release,
NULL, /* fsync */
NULL, /* fasync */
NULL, /* check_media_change */
NULL, /* revalidate */
NULL, /* lock */
#endif
};
#ifdef DUAL_DAC
static ssize_t cm_write_dual(struct file *file, const char *buffer, size_t count, loff_t *ppos)
{
struct cm_state *s = (struct cm_state *)file->private_data;
ssize_t ret;
unsigned long flags;
unsigned swptr;
int cnt;
VALIDATE_STATE(s);
if (ppos != &file->f_pos)
return -ESPIPE;
if (s->dma_dac.mapped)
return -ENXIO;
if (s->dma_adc.mapped)
return -ENXIO;
if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0)))
return ret;
if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
return ret;
if (!access_ok(VERIFY_READ, buffer, count))
return -EFAULT;
ret = 0;
#if 0
spin_lock_irqsave(&s->lock, flags);
cm_update_ptr(s);
spin_unlock_irqrestore(&s->lock, flags);
#endif
while (count > 0) {
spin_lock_irqsave(&s->lock, flags);
if (s->dma_dac.count < 0) {
s->dma_dac.count = 0;
s->dma_dac.swptr = s->dma_dac.hwptr;
}
if (s->dma_adc.count < 0) {
s->dma_adc.count = 0;
s->dma_adc.swptr = s->dma_adc.hwptr;
}
swptr = s->dma_dac.swptr;
cnt = s->dma_dac.dmasize-swptr;
if (s->dma_dac.count + cnt > s->dma_dac.dmasize)
cnt = s->dma_dac.dmasize - s->dma_dac.count;
spin_unlock_irqrestore(&s->lock, flags);
if (cnt > count / 2)
cnt = count / 2;
if (cnt <= 0) {
start_dac(s);
start_dac1(s);
if (file->f_flags & O_NONBLOCK)
return ret ? ret : -EAGAIN;
if (!interruptible_sleep_on_timeout(&s->dma_dac.wait, HZ)) {
printk(KERN_DEBUG "cm: write: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n",
s->dma_dac.dmasize, s->dma_dac.fragsize, s->dma_dac.count,
s->dma_dac.hwptr, s->dma_dac.swptr);
stop_dac(s);
stop_dac1(s);
spin_lock_irqsave(&s->lock, flags);
set_dmadac(s, s->dma_dac.rawphys, s->dma_dac.dmasamples);
set_dmadac1(s, s->dma_adc.rawphys, s->dma_adc.dmasamples);
/* program sample counts */
outw(s->dma_dac.fragsamples-1, s->iobase + CODEC_CMI_CH0_FRAME2 + 2);
outw(s->dma_adc.fragsamples-1, s->iobase + CODEC_CMI_CH1_FRAME2 + 2);
s->dma_adc.count = s->dma_adc.hwptr = s->dma_adc.swptr = 0;
s->dma_dac.count = s->dma_dac.hwptr = s->dma_dac.swptr = 0;
spin_unlock_irqrestore(&s->lock, flags);
}
if (signal_pending(current))
return ret ? ret : -ERESTARTSYS;
continue;
}
#if 1
{
int i;
unsigned long *src, *dst0, *dst1;
src = (unsigned long *) buffer;
dst0 = (unsigned long *) (s->dma_dac.rawbuf + swptr);
dst1 = (unsigned long *) (s->dma_adc.rawbuf + swptr);
// copy left/right sample at one time
for (i = 0; i <= cnt / 4; i++)
{
*dst0++ = *src++;
*dst1++ = *src++;
}
}
#else
if (copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt))
return ret ? ret : -EFAULT;
if (copy_from_user(s->dma_adc.rawbuf + swptr, buffer, cnt))
return ret ? ret : -EFAULT;
#endif
swptr = (swptr + cnt) % s->dma_dac.dmasize;
spin_lock_irqsave(&s->lock, flags);
s->dma_adc.swptr =
s->dma_dac.swptr = swptr;
s->dma_adc.count += cnt;
s->dma_dac.count += cnt;
s->dma_adc.endcleared =
s->dma_dac.endcleared = 0;
spin_unlock_irqrestore(&s->lock, flags);
count -= cnt * 2;
buffer += cnt * 2;
ret += cnt * 2;
start_dac(s);
start_dac1(s);
}
return ret;
}
static unsigned int cm_poll_dual(struct file *file, struct poll_table_struct *wait)
{
struct cm_state *s = (struct cm_state *)file->private_data;
unsigned long flags;
unsigned int mask = 0;
VALIDATE_STATE(s);
if (file->f_mode & FMODE_WRITE)
poll_wait(file, &s->dma_dac.wait, wait);
if (file->f_mode & FMODE_READ)
poll_wait(file, &s->dma_adc.wait, wait);
spin_lock_irqsave(&s->lock, flags);
cm_update_ptr(s);
if (file->f_mode & FMODE_READ) {
if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
mask |= POLLIN | POLLRDNORM;
}
if (file->f_mode & FMODE_WRITE) {
if (s->dma_dac.mapped) {
if (s->dma_dac.count >= (signed)s->dma_dac.fragsize)
mask |= POLLOUT | POLLWRNORM;
} else {
if ((signed)s->dma_dac.dmasize >= s->dma_dac.count + (signed)s->dma_dac.fragsize)
mask |= POLLOUT | POLLWRNORM;
}
}
spin_unlock_irqrestore(&s->lock, flags);
return mask;
}
static int cm_mmap_dual(struct file *file, struct vm_area_struct *vma)
{
struct cm_state *s = (struct cm_state *)file->private_data;
struct dmabuf *db;
int ret;
unsigned long size;
VALIDATE_STATE(s);
if (vma->vm_flags & VM_WRITE) {
if ((ret = prog_dmabuf(s, 1)) != 0)
return ret;
db = &s->dma_dac;
} else if (vma->vm_flags & VM_READ) {
if ((ret = prog_dmabuf(s, 0)) != 0)
return ret;
db = &s->dma_adc;
} else
return -EINVAL;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
if (vma->vm_pgoff != 0)
#else
if (vma->vm_offset != 0)
#endif
return -EINVAL;
size = vma->vm_end - vma->vm_start;
if (size > (PAGE_SIZE << db->buforder))
return -EINVAL;
if (remap_page_range(vma->vm_start, virt_to_phys(db->rawbuf), size, vma->vm_page_prot))
return -EAGAIN;
db->mapped = 1;
return 0;
}
static int cm_ioctl_dual(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
struct cm_state *s = (struct cm_state *)file->private_data;
unsigned long flags;
audio_buf_info abinfo;
count_info cinfo;
int val, mapped, ret;
unsigned char fmtm, fmtd;
VALIDATE_STATE(s);
mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) ||
((file->f_mode & FMODE_READ) && s->dma_adc.mapped);
switch (cmd) {
case OSS_GETVERSION:
return put_user(SOUND_VERSION, (int *)arg);
case SNDCTL_DSP_SYNC:
if (file->f_mode & FMODE_WRITE)
return drain_dac(s, 0/*file->f_flags & O_NONBLOCK*/);
return 0;
case SNDCTL_DSP_SETDUPLEX:
return 0;
case SNDCTL_DSP_GETCAPS:
return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER | DSP_CAP_MMAP, (int *)arg);
case SNDCTL_DSP_RESET:
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
stop_dac1(s);
synchronize_irq();
s->dma_dac.swptr = s->dma_dac.hwptr = s->dma_dac.count = s->dma_dac.total_bytes = 0;
s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0;
}
return 0;
case SNDCTL_DSP_SPEED:
get_user_ret(val, (int *)arg, -EFAULT);
if (val >= 0) {
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
stop_dac1(s);
s->dma_dac.ready = 0;
s->dma_adc.ready = 0;
set_dac_rate(s, val);
set_dac1_rate(s, val);
}
}
return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, (int *)arg);
case SNDCTL_DSP_STEREO:
get_user_ret(val, (int *)arg, -EFAULT);
fmtd = 0;
fmtm = ~0;
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
stop_dac1(s);
s->dma_dac.ready = 0;
s->dma_adc.ready = 0;
if (val) {
fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT;
fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
} else {
fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_DACSHIFT);
fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
}
}
set_fmt(s, fmtm, fmtd);
return 0;
case SNDCTL_DSP_CHANNELS:
get_user_ret(val, (int *)arg, -EFAULT);
if (val != 0) {
fmtd = 0;
fmtm = ~0;
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
stop_dac1(s);
s->dma_dac.ready = 0;
s->dma_adc.ready = 0;
if (val >= 2) {
fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT;
fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
} else {
fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_DACSHIFT);
fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
}
}
set_fmt(s, fmtm, fmtd);
}
return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_STEREO << CM_CFMT_ADCSHIFT)
: (CM_CFMT_STEREO << CM_CFMT_DACSHIFT))) ? 2 : 1, (int *)arg);
case SNDCTL_DSP_GETFMTS: /* Returns a mask */
return put_user(AFMT_S16_LE|AFMT_U8, (int *)arg);
case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/
get_user_ret(val, (int *)arg, -EFAULT);
if (val != AFMT_QUERY) {
fmtd = 0;
fmtm = ~0;
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
stop_dac1(s);
s->dma_dac.ready = 0;
s->dma_adc.ready = 0;
if (val == AFMT_S16_LE) {
fmtd |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT;
fmtd |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT;
} else {
fmtm &= ~(CM_CFMT_16BIT << CM_CFMT_DACSHIFT);
fmtm &= ~(CM_CFMT_16BIT << CM_CFMT_ADCSHIFT);
}
}
set_fmt(s, fmtm, fmtd);
}
return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_16BIT << CM_CFMT_ADCSHIFT)
: (CM_CFMT_16BIT << CM_CFMT_DACSHIFT))) ? AFMT_S16_LE : AFMT_U8, (int *)arg);
case SNDCTL_DSP_POST:
return 0;
case SNDCTL_DSP_GETTRIGGER:
val = 0;
if (file->f_mode & FMODE_WRITE && s->enable & CM_CENABLE_PE)
val |= PCM_ENABLE_OUTPUT;
return put_user(val, (int *)arg);
case SNDCTL_DSP_SETTRIGGER:
get_user_ret(val, (int *)arg, -EFAULT);
if (file->f_mode & FMODE_WRITE) {
if (val & PCM_ENABLE_OUTPUT) {
if ((!s->dma_dac.ready && (ret = prog_dmabuf(s, 0))) || (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1))))
return ret;
start_dac(s);
start_dac1(s);
} else {
stop_dac(s);
stop_dac1(s);
}
}
return 0;
case SNDCTL_DSP_GETOSPACE:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
if (!(s->enable & CM_CENABLE_PE) && (val = prog_dmabuf(s, 0) | prog_dmabuf(s, 1)) != 0)
return val;
spin_lock_irqsave(&s->lock, flags);
cm_update_ptr(s);
abinfo.fragsize = s->dma_dac.fragsize;
abinfo.bytes = s->dma_dac.dmasize - s->dma_dac.count;
abinfo.fragstotal = s->dma_dac.numfrag;
abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift;
abinfo.fragsize *= 2;
abinfo.bytes *= 2;
spin_unlock_irqrestore(&s->lock, flags);
return copy_to_user((void *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_NONBLOCK:
file->f_flags |= O_NONBLOCK;
return 0;
case SNDCTL_DSP_GETODELAY:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
spin_lock_irqsave(&s->lock, flags);
cm_update_ptr(s);
val = s->dma_dac.count;
val *= 2;
spin_unlock_irqrestore(&s->lock, flags);
return put_user(val, (int *)arg);
case SNDCTL_DSP_GETOPTR:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
spin_lock_irqsave(&s->lock, flags);
cm_update_ptr(s);
cinfo.bytes = s->dma_dac.total_bytes;
cinfo.blocks = s->dma_dac.count >> s->dma_dac.fragshift;
cinfo.ptr = s->dma_dac.hwptr;
cinfo.bytes *= 2;
cinfo.ptr *= 2;
if (s->dma_dac.mapped)
s->dma_dac.count &= s->dma_dac.fragsize-1;
spin_unlock_irqrestore(&s->lock, flags);
return copy_to_user((void *)arg, &cinfo, sizeof(cinfo));
case SNDCTL_DSP_GETBLKSIZE:
if (file->f_mode & FMODE_WRITE) {
if ((val = prog_dmabuf(s, 0) | prog_dmabuf(s, 1)))
return val;
return put_user(2 * s->dma_dac.fragsize, (int *)arg);
}
if ((val = prog_dmabuf(s, 1)))
return val;
return put_user(2 * s->dma_adc.fragsize, (int *)arg);
case SNDCTL_DSP_SETFRAGMENT:
get_user_ret(val, (int *)arg, -EFAULT);
if (file->f_mode & FMODE_WRITE) {
s->dma_adc.ossfragshift =
s->dma_dac.ossfragshift = val & 0xffff;
s->dma_adc.ossmaxfrags =
s->dma_dac.ossmaxfrags = (val >> 16) & 0xffff;
if (s->dma_dac.ossfragshift < 4)
s->dma_adc.ossfragshift =
s->dma_dac.ossfragshift = 4;
if (s->dma_dac.ossfragshift > 15)
s->dma_adc.ossfragshift =
s->dma_dac.ossfragshift = 15;
if (s->dma_dac.ossmaxfrags < 4)
s->dma_adc.ossmaxfrags =
s->dma_dac.ossmaxfrags = 4;
}
return 0;
case SNDCTL_DSP_SUBDIVIDE:
if (file->f_mode & FMODE_WRITE && s->dma_dac.subdivision)
return -EINVAL;
get_user_ret(val, (int *)arg, -EFAULT);
if (val != 1 && val != 2 && val != 4)
return -EINVAL;
if (file->f_mode & FMODE_WRITE)
s->dma_adc.subdivision =
s->dma_dac.subdivision = val;
return 0;
case SOUND_PCM_READ_RATE:
return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, (int *)arg);
case SOUND_PCM_READ_CHANNELS:
return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_STEREO << CM_CFMT_ADCSHIFT) : (CM_CFMT_STEREO << CM_CFMT_DACSHIFT))) ? 2 : 1, (int *)arg);
case SOUND_PCM_READ_BITS:
return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_16BIT << CM_CFMT_ADCSHIFT) : (CM_CFMT_16BIT << CM_CFMT_DACSHIFT))) ? 16 : 8, (int *)arg);
case SOUND_PCM_READ_FILTER:
return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, (int *)arg);
case SOUND_PCM_WRITE_FILTER:
case SNDCTL_DSP_SETSYNCRO:
return -EINVAL;
}
return mixer_ioctl(s, cmd, arg);
}
static int cm_open_dual(struct inode *inode, struct file *file)
{
int minor = MINOR(inode->i_rdev);
struct cm_state *s = devs;
unsigned char fmtm = ~0, fmts = 0;
while (s && ((s->dev_dsp ^ minor) & ~0xf))
s = s->next;
if (!s)
return -ENODEV;
VALIDATE_STATE(s);
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
file->private_data = s;
/* wait for device to become free */
down(&s->open_sem);
while (s->open_mode & file->f_mode) {
if (file->f_flags & O_NONBLOCK) {
up(&s->open_sem);
return -EBUSY;
}
up(&s->open_sem);
interruptible_sleep_on(&s->open_wait);
if (signal_pending(current))
return -ERESTARTSYS;
down(&s->open_sem);
}
if (file->f_mode & FMODE_WRITE) {
fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_DACSHIFT);
fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_ADCSHIFT);
// the HW only support 16-bit stereo
fmts |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT;
fmts |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT;
fmts |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT;
fmts |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags = s->dma_dac.subdivision = 0;
s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags = s->dma_adc.subdivision = 0;
set_dac_rate(s, 8000);
set_dac1_rate(s, 8000);
}
set_fmt(s, fmtm, fmts);
s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
s->dual_mode = 1;
/* disable 4 channel mode (analog duplicate) */
if (s->four_ch)
outb(inb(s->iobase + CODEC_CMI_MISC_CTRL + 3) & ~0x04, s->iobase + CODEC_CMI_MISC_CTRL + 3);
/* turn on double DAC mode */
outb(inb(s->iobase + CODEC_CMI_MISC_CTRL + 2) | 0x80, s->iobase + CODEC_CMI_MISC_CTRL + 2);
up(&s->open_sem);
MOD_INC_USE_COUNT;
return 0;
}
static int cm_release_dual(struct inode *inode, struct file *file)
{
struct cm_state *s = (struct cm_state *)file->private_data;
VALIDATE_STATE(s);
if (file->f_mode & FMODE_WRITE)
drain_dac(s, file->f_flags & O_NONBLOCK);
down(&s->open_sem);
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
stop_dac1(s);
#ifndef FIXEDDMA
dealloc_dmabuf(&s->dma_dac);
dealloc_dmabuf(&s->dma_adc);
#endif
}
s->open_mode &= (~file->f_mode) & (FMODE_READ|FMODE_WRITE);
s->dual_mode = 0;
/* enable 4 channel mode (analog duplicate) */
if (s->four_ch)
outb(inb(s->iobase + CODEC_CMI_MISC_CTRL + 3) | 0x04, s->iobase + CODEC_CMI_MISC_CTRL + 3);
/* turn off double DAC mode */
outb(inb(s->iobase + CODEC_CMI_MISC_CTRL + 2) & ~0x80, s->iobase + CODEC_CMI_MISC_CTRL + 2);
up(&s->open_sem);
wake_up(&s->open_wait);
MOD_DEC_USE_COUNT;
return 0;
}
static /*const*/ struct file_operations cm_dsp_fops = {
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
llseek: cm_llseek,
write: cm_write_dual,
poll: cm_poll_dual,
ioctl: cm_ioctl_dual,
mmap: cm_mmap_dual,
open: cm_open_dual,
release: cm_release_dual,
#else
&cm_llseek,
NULL,
&cm_write_dual,
NULL, /* readdir */
&cm_poll_dual,
&cm_ioctl_dual,
&cm_mmap_dual,
&cm_open_dual,
NULL, /* flush */
&cm_release_dual,
NULL, /* fsync */
NULL, /* fasync */
NULL, /* check_media_change */
NULL, /* revalidate */
NULL, /* lock */
#endif
};
#endif
#ifdef CONFIG_SOUND_CMPCI_MIDI
/* --------------------------------------------------------------------- */
static ssize_t cm_midi_read(struct file *file, char *buffer, size_t count, loff_t *ppos)
{
struct cm_state *s = (struct cm_state *)file->private_data;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
DECLARE_WAITQUEUE(wait, current);
#endif
ssize_t ret;
unsigned long flags;
unsigned ptr;
int cnt;
VALIDATE_STATE(s);
if (ppos != &file->f_pos)
return -ESPIPE;
if (!access_ok(VERIFY_WRITE, buffer, count))
return -EFAULT;
ret = 0;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
add_wait_queue(&s->midi.iwait, &wait);
#endif
while (count > 0) {
spin_lock_irqsave(&s->lock, flags);
ptr = s->midi.ird;
cnt = MIDIINBUF - ptr;
if (s->midi.icnt < cnt)
cnt = s->midi.icnt;
spin_unlock_irqrestore(&s->lock, flags);
if (cnt > count)
cnt = count;
if (cnt <= 0) {
if (file->f_flags & O_NONBLOCK)
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
{
if (!ret)
ret = -EAGAIN;
break;
}
__set_current_state(TASK_INTERRUPTIBLE);
schedule();
if (signal_pending(current))
{
if (!ret)
ret = -ERESTARTSYS;
break;
}
#else
return ret ? ret : -EAGAIN;
interruptible_sleep_on(&s->midi.iwait);
if (signal_pending(current))
return ret ? ret : -ERESTARTSYS;
#endif
continue;
}
if (copy_to_user(buffer, s->midi.ibuf + ptr, cnt))
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
{
if (!ret)
ret = -EFAULT;
break;
}
#else
return ret ? ret : -EFAULT;
#endif
ptr = (ptr + cnt) % MIDIINBUF;
spin_lock_irqsave(&s->lock, flags);
s->midi.ird = ptr;
s->midi.icnt -= cnt;
spin_unlock_irqrestore(&s->lock, flags);
count -= cnt;
buffer += cnt;
ret += cnt;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
break;
#endif
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
__set_current_state(TASK_RUNNING);
remove_wait_queue(&s->midi.iwait, &wait);
#endif
return ret;
}
static ssize_t cm_midi_write(struct file *file, const char *buffer, size_t count, loff_t *ppos)
{
struct cm_state *s = (struct cm_state *)file->private_data;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
DECLARE_WAITQUEUE(wait, current);
#endif
ssize_t ret;
unsigned long flags;
unsigned ptr;
int cnt;
VALIDATE_STATE(s);
if (ppos != &file->f_pos)
return -ESPIPE;
if (!access_ok(VERIFY_READ, buffer, count))
return -EFAULT;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
if (count == 0)
return 0;
#endif
ret = 0;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
add_wait_queue(&s->midi.owait, &wait);
#endif
while (count > 0) {
spin_lock_irqsave(&s->lock, flags);
ptr = s->midi.owr;
cnt = MIDIOUTBUF - ptr;
if (s->midi.ocnt + cnt > MIDIOUTBUF)
cnt = MIDIOUTBUF - s->midi.ocnt;
if (cnt <= 0)
cm_handle_midi(s);
spin_unlock_irqrestore(&s->lock, flags);
if (cnt > count)
cnt = count;
if (cnt <= 0) {
if (file->f_flags & O_NONBLOCK)
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
{
if (!ret)
ret = -EAGAIN;
break;
}
__set_current_state(TASK_INTERRUPTIBLE);
schedule();
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
break;
}
#else
return ret ? ret : -EAGAIN;
interruptible_sleep_on(&s->midi.owait);
if (signal_pending(current))
return ret ? ret : -ERESTARTSYS;
#endif
continue;
}
if (copy_from_user(s->midi.obuf + ptr, buffer, cnt))
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
{
if (!ret)
ret = -EFAULT;
break;
}
#else
return ret ? ret : -EFAULT;
#endif
ptr = (ptr + cnt) % MIDIOUTBUF;
spin_lock_irqsave(&s->lock, flags);
s->midi.owr = ptr;
s->midi.ocnt += cnt;
spin_unlock_irqrestore(&s->lock, flags);
count -= cnt;
buffer += cnt;
ret += cnt;
spin_lock_irqsave(&s->lock, flags);
cm_handle_midi(s);
spin_unlock_irqrestore(&s->lock, flags);
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
__set_current_state(TASK_RUNNING);
remove_wait_queue(&s->midi.owait, &wait);
#endif
return ret;
}
static unsigned int cm_midi_poll(struct file *file, struct poll_table_struct *wait)
{
struct cm_state *s = (struct cm_state *)file->private_data;
unsigned long flags;
unsigned int mask = 0;
VALIDATE_STATE(s);
if (file->f_mode & FMODE_WRITE)
poll_wait(file, &s->midi.owait, wait);
if (file->f_mode & FMODE_READ)
poll_wait(file, &s->midi.iwait, wait);
spin_lock_irqsave(&s->lock, flags);
if (file->f_mode & FMODE_READ) {
if (s->midi.icnt > 0)
mask |= POLLIN | POLLRDNORM;
}
if (file->f_mode & FMODE_WRITE) {
if (s->midi.ocnt < MIDIOUTBUF)
mask |= POLLOUT | POLLWRNORM;
}
spin_unlock_irqrestore(&s->lock, flags);
return mask;
}
static int cm_midi_open(struct inode *inode, struct file *file)
{
int minor = MINOR(inode->i_rdev);
struct cm_state *s = devs;
unsigned long flags;
while (s && s->dev_midi != minor)
s = s->next;
if (!s)
return -ENODEV;
VALIDATE_STATE(s);
file->private_data = s;
/* wait for device to become free */
down(&s->open_sem);
while (s->open_mode & (file->f_mode << FMODE_MIDI_SHIFT)) {
if (file->f_flags & O_NONBLOCK) {
up(&s->open_sem);
return -EBUSY;
}
up(&s->open_sem);
interruptible_sleep_on(&s->open_wait);
if (signal_pending(current))
return -ERESTARTSYS;
down(&s->open_sem);
}
spin_lock_irqsave(&s->lock, flags);
if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) {
s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
s->midi.ord = s->midi.owr = s->midi.ocnt = 0;
/* enable MPU-401 */
outb(inb(s->iobase + CODEC_CMI_FUNCTRL1) | 4, s->iobase + CODEC_CMI_FUNCTRL1);
outb(0xff, s->iomidi+1); /* reset command */
if (!(inb(s->iomidi+1) & 0x80))
inb(s->iomidi);
outb(0x3f, s->iomidi+1); /* uart command */
if (!(inb(s->iomidi+1) & 0x80))
inb(s->iomidi);
s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
init_timer(&s->midi.timer);
s->midi.timer.expires = jiffies+1;
s->midi.timer.data = (unsigned long)s;
s->midi.timer.function = cm_midi_timer;
add_timer(&s->midi.timer);
}
if (file->f_mode & FMODE_READ) {
s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
}
if (file->f_mode & FMODE_WRITE) {
s->midi.ord = s->midi.owr = s->midi.ocnt = 0;
}
spin_unlock_irqrestore(&s->lock, flags);
s->open_mode |= (file->f_mode << FMODE_MIDI_SHIFT) & (FMODE_MIDI_READ | FMODE_MIDI_WRITE);
up(&s->open_sem);
MOD_INC_USE_COUNT;
return 0;
}
static int cm_midi_release(struct inode *inode, struct file *file)
{
struct cm_state *s = (struct cm_state *)file->private_data;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
DECLARE_WAITQUEUE(wait, current);
#else
struct wait_queue wait = { current, NULL };
#endif
unsigned long flags;
unsigned count, tmo;
VALIDATE_STATE(s);
if (file->f_mode & FMODE_WRITE) {
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
__set_current_state(TASK_INTERRUPTIBLE);
#else
current->state = TASK_INTERRUPTIBLE;
#endif
add_wait_queue(&s->midi.owait, &wait);
for (;;) {
spin_lock_irqsave(&s->lock, flags);
count = s->midi.ocnt;
spin_unlock_irqrestore(&s->lock, flags);
if (count <= 0)
break;
if (signal_pending(current))
break;
if (file->f_flags & O_NONBLOCK) {
remove_wait_queue(&s->midi.owait, &wait);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
set_current_state(TASK_RUNNING);
#else
current->state = TASK_RUNNING;
#endif
return -EBUSY;
}
tmo = (count * HZ) / 3100;
if (!schedule_timeout(tmo ? : 1) && tmo)
printk(KERN_DEBUG "cm: midi timed out??\n");
}
remove_wait_queue(&s->midi.owait, &wait);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
set_current_state(TASK_RUNNING);
#else
current->state = TASK_RUNNING;
#endif
}
down(&s->open_sem);
s->open_mode &= (~(file->f_mode << FMODE_MIDI_SHIFT)) & (FMODE_MIDI_READ|FMODE_MIDI_WRITE);
spin_lock_irqsave(&s->lock, flags);
if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) {
del_timer(&s->midi.timer);
outb(0xff, s->iomidi+1); /* reset command */
if (!(inb(s->iomidi+1) & 0x80))
inb(s->iomidi);
/* disable MPU-401 */
outb(inb(s->iobase + CODEC_CMI_FUNCTRL1) & ~4, s->iobase + CODEC_CMI_FUNCTRL1);
}
spin_unlock_irqrestore(&s->lock, flags);
up(&s->open_sem);
wake_up(&s->open_wait);
MOD_DEC_USE_COUNT;
return 0;
}
static /*const*/ struct file_operations cm_midi_fops = {
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
llseek: cm_llseek,
read: cm_midi_read,
write: cm_midi_write,
poll: cm_midi_poll,
open: cm_midi_open,
release: cm_midi_release,
#else
&cm_llseek,
&cm_midi_read,
&cm_midi_write,
NULL, /* readdir */
&cm_midi_poll,
NULL, /* ioctl */
NULL, /* mmap */
&cm_midi_open,
NULL, /* flush */
&cm_midi_release,
NULL, /* fsync */
NULL, /* fasync */
NULL, /* check_media_change */
NULL, /* revalidate */
NULL, /* lock */
#endif
};
#endif
/* --------------------------------------------------------------------- */
#ifdef CONFIG_SOUND_CMPCI_FM
static int cm_dmfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
static const unsigned char op_offset[18] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15
};
struct cm_state *s = (struct cm_state *)file->private_data;
struct dm_fm_voice v;
struct dm_fm_note n;
struct dm_fm_params p;
unsigned int io;
unsigned int regb;
switch (cmd) {
case FM_IOCTL_RESET:
for (regb = 0xb0; regb < 0xb9; regb++) {
outb(regb, s->iosynth);
outb(0, s->iosynth+1);
outb(regb, s->iosynth+2);
outb(0, s->iosynth+3);
}
return 0;
case FM_IOCTL_PLAY_NOTE:
if (copy_from_user(&n, (void *)arg, sizeof(n)))
return -EFAULT;
if (n.voice >= 18)
return -EINVAL;
if (n.voice >= 9) {
regb = n.voice - 9;
io = s->iosynth+2;
} else {
regb = n.voice;
io = s->iosynth;
}
outb(0xa0 + regb, io);
outb(n.fnum & 0xff, io+1);
outb(0xb0 + regb, io);
outb(((n.fnum >> 8) & 3) | ((n.octave & 7) << 2) | ((n.key_on & 1) << 5), io+1);
return 0;
case FM_IOCTL_SET_VOICE:
if (copy_from_user(&v, (void *)arg, sizeof(v)))
return -EFAULT;
if (v.voice >= 18)
return -EINVAL;
regb = op_offset[v.voice];
io = s->iosynth + ((v.op & 1) << 1);
outb(0x20 + regb, io);
outb(((v.am & 1) << 7) | ((v.vibrato & 1) << 6) | ((v.do_sustain & 1) << 5) |
((v.kbd_scale & 1) << 4) | (v.harmonic & 0xf), io+1);
outb(0x40 + regb, io);
outb(((v.scale_level & 0x3) << 6) | (v.volume & 0x3f), io+1);
outb(0x60 + regb, io);
outb(((v.attack & 0xf) << 4) | (v.decay & 0xf), io+1);
outb(0x80 + regb, io);
outb(((v.sustain & 0xf) << 4) | (v.release & 0xf), io+1);
outb(0xe0 + regb, io);
outb(v.waveform & 0x7, io+1);
if (n.voice >= 9) {
regb = n.voice - 9;
io = s->iosynth+2;
} else {
regb = n.voice;
io = s->iosynth;
}
outb(0xc0 + regb, io);
outb(((v.right & 1) << 5) | ((v.left & 1) << 4) | ((v.feedback & 7) << 1) |
(v.connection & 1), io+1);
return 0;
case FM_IOCTL_SET_PARAMS:
if (copy_from_user(&p, (void *)arg, sizeof(p)))
return -EFAULT;
outb(0x08, s->iosynth);
outb((p.kbd_split & 1) << 6, s->iosynth+1);
outb(0xbd, s->iosynth);
outb(((p.am_depth & 1) << 7) | ((p.vib_depth & 1) << 6) | ((p.rhythm & 1) << 5) | ((p.bass & 1) << 4) |
((p.snare & 1) << 3) | ((p.tomtom & 1) << 2) | ((p.cymbal & 1) << 1) | (p.hihat & 1), s->iosynth+1);
return 0;
case FM_IOCTL_SET_OPL:
outb(4, s->iosynth+2);
outb(arg, s->iosynth+3);
return 0;
case FM_IOCTL_SET_MODE:
outb(5, s->iosynth+2);
outb(arg & 1, s->iosynth+3);
return 0;
default:
return -EINVAL;
}
}
static int cm_dmfm_open(struct inode *inode, struct file *file)
{
int minor = MINOR(inode->i_rdev);
struct cm_state *s = devs;
while (s && s->dev_dmfm != minor)
s = s->next;
if (!s)
return -ENODEV;
VALIDATE_STATE(s);
file->private_data = s;
/* wait for device to become free */
down(&s->open_sem);
while (s->open_mode & FMODE_DMFM) {
if (file->f_flags & O_NONBLOCK) {
up(&s->open_sem);
return -EBUSY;
}
up(&s->open_sem);
interruptible_sleep_on(&s->open_wait);
if (signal_pending(current))
return -ERESTARTSYS;
down(&s->open_sem);
}
/* init the stuff */
outb(1, s->iosynth);
outb(0x20, s->iosynth+1); /* enable waveforms */
outb(4, s->iosynth+2);
outb(0, s->iosynth+3); /* no 4op enabled */
outb(5, s->iosynth+2);
outb(1, s->iosynth+3); /* enable OPL3 */
s->open_mode |= FMODE_DMFM;
up(&s->open_sem);
MOD_INC_USE_COUNT;
return 0;
}
static int cm_dmfm_release(struct inode *inode, struct file *file)
{
struct cm_state *s = (struct cm_state *)file->private_data;
unsigned int regb;
VALIDATE_STATE(s);
down(&s->open_sem);
s->open_mode &= ~FMODE_DMFM;
for (regb = 0xb0; regb < 0xb9; regb++) {
outb(regb, s->iosynth);
outb(0, s->iosynth+1);
outb(regb, s->iosynth+2);
outb(0, s->iosynth+3);
}
up(&s->open_sem);
wake_up(&s->open_wait);
MOD_DEC_USE_COUNT;
return 0;
}
static /*const*/ struct file_operations cm_dmfm_fops = {
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
llseek: cm_llseek,
ioctl: cm_dmfm_ioctl,
open: cm_dmfm_open,
release: cm_dmfm_release,
#else
&cm_llseek,
NULL, /* read */
NULL, /* write */
NULL, /* readdir */
NULL, /* poll */
&cm_dmfm_ioctl,
NULL, /* mmap */
&cm_dmfm_open,
NULL, /* flush */
&cm_dmfm_release,
NULL, /* fsync */
NULL, /* fasync */
NULL, /* check_media_change */
NULL, /* revalidate */
NULL, /* lock */
#endif
};
#endif /* CONFIG_SOUND_CMPCI_FM */
/* --------------------------------------------------------------------- */
/* maximum number of devices */
#define NR_DEVICE 5
#if 0
static int reverb[NR_DEVICE] = { 0, };
static int wavetable[NR_DEVICE] = { 0, };
#endif
/* --------------------------------------------------------------------- */
static struct initvol {
int mixch;
int vol;
} initvol[] __initdata = {
{ SOUND_MIXER_WRITE_CD, 0x4040 },
{ SOUND_MIXER_WRITE_LINE, 0x4040 },
{ SOUND_MIXER_WRITE_MIC, 0x4040 },
{ SOUND_MIXER_WRITE_SYNTH, 0x4040 },
{ SOUND_MIXER_WRITE_VOLUME, 0x4040 },
{ SOUND_MIXER_WRITE_PCM, 0x4040 }
};
#ifdef CONFIG_SOUND_CMPCI_MIDI
static int mpu_io = CONFIG_SOUND_CMPCI_MPUIO;
#endif
#ifdef CONFIG_SOUND_CMPCI_FM
static int fm_io = CONFIG_SOUND_CMPCI_FMIO;
#endif
#ifdef CONFIG_SOUND_CMPCI_SPDIFLOOP
static int spdif_loop = 1;
#else
static int spdif_loop = 0;
#endif
#ifdef CONFIG_SOUND_CMPCI_4CH
static int four_ch = 1;
#else
static int four_ch = 0;
#endif
#ifdef CONFIG_SOUND_CMPCI_REAR
static int rear_out = 1;
#else
static int rear_out = 0;
#endif
#ifdef CONFIG_SOUND_CMPCI_PCTEL
static int modem = 1;
#else
static int modem = 0;
#endif
#ifdef CONFIG_SOUND_CMPCI_JOYSTICK
static int joystick = 1;
#else
static int joystick = 0;
#endif
#ifdef MODULE
MODULE_PARM(mpu_io, "i");
MODULE_PARM(fm_io, "i");
MODULE_PARM(spdif_loop, "i");
MODULE_PARM(four_ch, "i");
MODULE_PARM(rear_out, "i");
MODULE_PARM(modem, "i");
MODULE_PARM(joystick, "i");
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
int __init init_module(void)
#else
__initfunc(int init_module(void))
#endif
#else
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
int __init init_cmpci(void)
#else
__initfunc(int init_cmpci(void))
#endif
#endif
{
struct cm_state *s;
struct pci_dev *pcidev = NULL;
mm_segment_t fs;
int i, val, index = 0;
#ifdef CONFIG_SOUND_CMPCI_MIDI
unsigned char reg_mask = 0;
#endif
struct {
unsigned short deviceid;
char *devicename;
} devicetable[] =
{
{ PCI_DEVICE_ID_CMEDIA_CM8338A, "CM8338A" },
{ PCI_DEVICE_ID_CMEDIA_CM8338B, "CM8338B" },
{ PCI_DEVICE_ID_CMEDIA_CM8738, "CM8738" },
{ PCI_DEVICE_ID_CMEDIA_CM8738B, "CM8738B" },
};
char *devicename = "unknown";
#ifdef CONFIG_PCI
if (!pci_present()) /* No PCI bus in this machine! */
#endif
return -ENODEV;
printk(KERN_INFO "cm: version $Revision: 4.3 $ time " __TIME__ " " __DATE__ "\n");
#if 0
if (!(wavetable_mem = __get_free_pages(GFP_KERNEL, 20-PAGE_SHIFT)))
printk(KERN_INFO "cm: cannot allocate 1MB of contiguous nonpageable memory for wavetable data\n");
#endif
while (index < NR_DEVICE && pcidev == NULL && (
(pcidev = pci_find_device(PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A, pcidev)) ||
(pcidev = pci_find_device(PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B, pcidev)) ||
(pcidev = pci_find_device(PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738, pcidev)))) {
if (pcidev->irq == 0)
continue;
if (!(s = kmalloc(sizeof(struct cm_state), GFP_KERNEL))) {
printk(KERN_WARNING "cm: out of memory\n");
continue;
}
/* search device name */
for (i = 0; i < sizeof(devicetable) / sizeof(devicetable[0]); i++)
{
if (devicetable[i].deviceid == pcidev->device)
{
devicename = devicetable[i].devicename;
break;
}
}
memset(s, 0, sizeof(struct cm_state));
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
init_waitqueue_head(&s->dma_adc.wait);
init_waitqueue_head(&s->dma_dac.wait);
init_waitqueue_head(&s->open_wait);
init_waitqueue_head(&s->midi.iwait);
init_waitqueue_head(&s->midi.owait);
init_MUTEX(&s->open_sem);
#else
init_waitqueue(&s->dma_adc.wait);
init_waitqueue(&s->dma_dac.wait);
init_waitqueue(&s->open_wait);
init_waitqueue(&s->midi.iwait);
init_waitqueue(&s->midi.owait);
s->open_sem = MUTEX;
#endif
spin_lock_init(&s->lock);
s->magic = CM_MAGIC;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
s->iobase = pcidev->resource[0].start;
#else
s->iobase = pcidev->base_address[0] & PCI_BASE_ADDRESS_IO_MASK;
#endif
#ifdef CONFIG_SOUND_CMPCI_FM
s->iosynth = fm_io;
#endif
#ifdef CONFIG_SOUND_CMPCI_MIDI
s->iomidi = mpu_io;
#endif
#ifdef DUAL_DAC
s->dual_mode = 0;
s->hw_dual_dac = (pcidev->device == PCI_DEVICE_ID_CMEDIA_CM8738B);
#endif
s->four_ch = four_ch;
if (s->iobase == 0)
continue;
s->irq = pcidev->irq;
if (check_region(s->iobase, CM_EXTENT_CODEC)) {
printk(KERN_ERR "cm: io ports %#x-%#x in use\n", s->iobase, s->iobase+CM_EXTENT_CODEC-1);
goto err_region5;
}
request_region(s->iobase, CM_EXTENT_CODEC, "cmpci");
#ifdef CONFIG_SOUND_CMPCI_MIDI
if (s->iomidi)
{
if (check_region(s->iomidi, CM_EXTENT_MIDI)) {
printk(KERN_ERR "cm: io ports %#x-%#x in use\n", s->iomidi, s->iomidi+CM_EXTENT_MIDI-1);
goto err_region4;
}
request_region(s->iomidi, CM_EXTENT_MIDI, "cmpci Midi");
/* set IO based at 0x330 */
switch (s->iomidi)
{
case 0x330:
reg_mask = 0;
break;
case 0x320:
reg_mask = 0x20;
break;
case 0x310:
reg_mask = 0x40;
break;
case 0x300:
reg_mask = 0x60;
break;
}
outb((inb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3) & ~0x60) | reg_mask, s->iobase + CODEC_CMI_LEGACY_CTRL + 3);
}
#endif
#ifdef CONFIG_SOUND_CMPCI_FM
if (s->iosynth)
{
if (check_region(s->iosynth, CM_EXTENT_SYNTH)) {
printk(KERN_ERR "cm: io ports %#x-%#x in use\n", s->iosynth, s->iosynth+CM_EXTENT_SYNTH-1);
goto err_region1;
}
request_region(s->iosynth, CM_EXTENT_SYNTH, "cmpci FM");
/* enable FM */
outb(inb(s->iobase + CODEC_CMI_MISC_CTRL + 2) | 8, s->iobase + CODEC_CMI_MISC_CTRL);
}
#endif
/* initialize codec registers */
outb(0, s->iobase + CODEC_CMI_INT_HLDCLR + 2); /* disable ints */
outb(0, s->iobase + CODEC_CMI_FUNCTRL0 + 2); /* disable channels */
/* reset mixer */
wrmixer(s, DSP_MIX_DATARESETIDX, 0);
/* request irq */
if (request_irq(s->irq, cm_interrupt, SA_SHIRQ, "cmpci", s)) {
printk(KERN_ERR "cm: irq %u in use\n", s->irq);
goto err_irq;
}
printk(KERN_INFO "cm: found %s adapter at io %#06x irq %u\n",
devicename, s->iobase, s->irq);
/* register devices */
if ((s->dev_audio = register_sound_dsp(&cm_audio_fops, -1)) < 0)
goto err_dev1;
if ((s->dev_mixer = register_sound_mixer(&cm_mixer_fops, -1)) < 0)
goto err_dev2;
#ifdef CONFIG_SOUND_CMPCI_MIDI
if ((s->dev_midi = register_sound_midi(&cm_midi_fops, -1)) < 0)
goto err_dev3;
#endif
#ifdef CONFIG_SOUND_CMPCI_FM
if ((s->dev_dmfm = register_sound_special(&cm_dmfm_fops, 15 /* ?? */)) < 0)
goto err_dev4;
#endif
#ifdef DUAL_DAC
if ((s->dev_dsp = register_sound_special(&cm_dsp_fops, 14)) < 0)
goto err_dev5;
#endif
pci_set_master(pcidev); /* enable bus mastering */
/* initialize the chips */
fs = get_fs();
set_fs(KERNEL_DS);
/* set mixer output */
frobindir(s, DSP_MIX_OUTMIXIDX, 0x1f, 0x1f);
/* set mixer input */
val = SOUND_MASK_LINE|SOUND_MASK_SYNTH|SOUND_MASK_CD|SOUND_MASK_MIC;
mixer_ioctl(s, SOUND_MIXER_WRITE_RECSRC, (unsigned long)&val);
for (i = 0; i < sizeof(initvol)/sizeof(initvol[0]); i++) {
val = initvol[i].vol;
mixer_ioctl(s, initvol[i].mixch, (unsigned long)&val);
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,3,0)
set_fs(fs);
#endif
if (pcidev->device == PCI_DEVICE_ID_CMEDIA_CM8738)
{
s->modem = modem;
if (modem)
{
/* enable FLINKON and disable FLINKOFF */
outb(inb((s->iobase + CODEC_CMI_MISC_CTRL) | 0x80) & ~0x40, s->iobase + CODEC_CMI_MISC_CTRL);
printk(KERN_INFO "cm: modem function supported\n");
}
/* enable SPDIF loop */
if (spdif_loop)
{
/* turn on spdif-in to spdif-out */
outb(inb(s->iobase + CODEC_CMI_FUNCTRL1) | 0x80, s->iobase + CODEC_CMI_FUNCTRL1);
printk(KERN_INFO "cm: Enable SPDIF loop\n");
}
else
outb(inb(s->iobase + CODEC_CMI_FUNCTRL1) & ~0x80, s->iobase + CODEC_CMI_FUNCTRL1);
/* enable 4 channels mode */
if (four_ch)
{
/* 4 channel mode (analog duplicate) */
outb(inb(s->iobase + CODEC_CMI_MISC_CTRL + 3) | 0x04, s->iobase + CODEC_CMI_MISC_CTRL + 3);
printk(KERN_INFO "cm: Enable 4 channels mode\n");
/* has separate rear-out jack ? */
if (rear_out)
{
/* has separate rear out jack */
outb(inb(s->iobase + CODEC_CMI_MIXER1) & ~0x20, s->iobase + CODEC_CMI_MIXER1);
}
else
{
outb(inb(s->iobase + CODEC_CMI_MIXER1) | 0x20, s->iobase + CODEC_CMI_MIXER1);
printk(KERN_INFO "cm: line-in routed as rear-out\n");
}
}
else
outb(inb(s->iobase + CODEC_CMI_MISC_CTRL + 3) & ~0x04, s->iobase + CODEC_CMI_MISC_CTRL + 3);
}
/* enable joystick */
if (joystick)
outb(inb(s->iobase + CODEC_CMI_FUNCTRL1) | 0x02, s->iobase + CODEC_CMI_FUNCTRL1);
else
outb(inb(s->iobase + CODEC_CMI_FUNCTRL1) & ~0x02, s->iobase + CODEC_CMI_FUNCTRL1);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,3,0)
set_fs(fs);
#endif
/* queue it for later freeing */
s->next = devs;
devs = s;
index++;
continue;
#ifdef DUAL_DAC
err_dev5:
#endif
#ifdef CONFIG_SOUND_CMPCI_FM
unregister_sound_special(s->dev_dmfm);
err_dev4:
#endif
#ifdef CONFIG_SOUND_CMPCI_MIDI
unregister_sound_midi(s->dev_midi);
err_dev3:
#endif
unregister_sound_mixer(s->dev_mixer);
err_dev2:
unregister_sound_dsp(s->dev_audio);
err_dev1:
printk(KERN_ERR "cm: cannot register misc device\n");
free_irq(s->irq, s);
err_irq:
#ifdef CONFIG_SOUND_CMPCI_FM
if (s->iosynth) release_region(s->iosynth, CM_EXTENT_SYNTH);
err_region1:
#endif
#ifdef CONFIG_SOUND_CMPCI_MIDI
if (s->iomidi) release_region(s->iomidi, CM_EXTENT_MIDI);
err_region4:
#endif
release_region(s->iobase, CM_EXTENT_CODEC);
err_region5:
kfree_s(s, sizeof(struct cm_state));
}
if (!devs) {
if (wavetable_mem)
free_pages(wavetable_mem, 20-PAGE_SHIFT);
return -ENODEV;
}
return 0;
}
/* --------------------------------------------------------------------- */
#ifdef MODULE
#if 0
MODULE_PARM(wavetable, "1-" __MODULE_STRING(NR_DEVICE) "i");
MODULE_PARM_DESC(wavetable, "if 1 the wavetable synth is enabled");
#endif
MODULE_AUTHOR("ChenLi Tien, cltien@home.com");
MODULE_DESCRIPTION("CMPCI Audio Driver");
void cleanup_module(void)
{
struct cm_state *s;
while ((s = devs)) {
devs = devs->next;
outb(0, s->iobase + CODEC_CMI_INT_HLDCLR + 2); /* disable ints */
synchronize_irq();
outb(0, s->iobase + CODEC_CMI_FUNCTRL0 + 2); /* disable channels */
free_irq(s->irq, s);
#ifdef FIXEDDMA
dealloc_dmabuf(&s->dma_dac);
dealloc_dmabuf(&s->dma_adc);
#endif
/* reset mixer */
wrmixer(s, DSP_MIX_DATARESETIDX, 0);
release_region(s->iobase, CM_EXTENT_CODEC);
#ifdef CONFIG_SOUND_CMPCI_MIDI
if (s->iomidi) release_region(s->iomidi, CM_EXTENT_MIDI);
#endif
#ifdef CONFIG_SOUND_CMPCI_FM
if (s->iosynth) release_region(s->iosynth, CM_EXTENT_SYNTH);
#endif
unregister_sound_dsp(s->dev_audio);
unregister_sound_mixer(s->dev_mixer);
#ifdef CONFIG_SOUND_CMPCI_MIDI
unregister_sound_midi(s->dev_midi);
#endif
#ifdef CONFIG_SOUND_CMPCI_FM
unregister_sound_special(s->dev_dmfm);
#endif
#ifdef DUAL_DAC
unregister_sound_special(s->dev_dsp);
#endif
kfree_s(s, sizeof(struct cm_state));
}
if (wavetable_mem)
free_pages(wavetable_mem, 20-PAGE_SHIFT);
printk(KERN_INFO "cm: unloading\n");
}
#endif /* MODULE */下载软件源码:







鄂公网安备42010402000303号